Advertisement

A unified phase transition picture of the charged topological black hole in Hořava-Lifshitz gravity

  • Jie-Xiong Mo
  • Xiao-Xiong Zeng
  • Gu-Qiang Li
  • Xin Jiang
  • Wen-Biao Liu
Article

Abstract

Aiming at a unified phase transition picture of the charged topological black hole in Hořava-Lifshitz gravity, we investigate this issue not only in canonical ensemble with the fixed charge case but also in grand-canonical ensemble with the fixed potential case. We firstly perform the standard analysis of the specific heat, the free energy and the Gibbs potential, and then study its geometrothermodynamics. It is shown that the local phase transition points not only witness the divergence of the specific heat, but also witness the minimum temperature and the maximum free energy or Gibbs potential. They also witness the divergence of the corresponding thermodynamic scalar curvature. No matter which ensemble is chosen, the metric constructed can successfully produce the behavior of the thermodynamic interaction and phase transition structure while other metrics failed to predict the phase transition point of the charged topological black hole in former literature. In grand-canonical ensemble, we have discovered the phase transition which has not been reported before. It is similar to the canonical ensemble in which the phase transition only takes place when k = −1. But it also has its unique characteristics that the location of the phase transition point depends on the value of potential, which is different from the canonical ensemble where the phase transition point is independent of the parameters. After an analytical check of Ehrenfest scheme, we find that the new phase transition is a second order one. It is also found that the thermodynamics of the black hole in Horava-Lifshitz gravity is quite different from that in Einstein gravity.

Keywords

Black Holes Black Holes in String Theory Classical Theories of Gravity 

References

  1. [1]
    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    S. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206-206] [INSPIRE].
  3. [3]
    S. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Holography, thermodynamics and fluctuations of charged AdS black ho es, Phys. Rev. D 60 (1999) 104026 [hep-th/9904197] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS blackholes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  7. [7]
    S. Nojiri and S.D. Odintsov, Anti-de Sitter black hole thermodynamics in higher derivative gravity and new confining deconfining phases in dual CFT, Phys. Lett. B 521 (2001) 87 [Erratum ibid. B 542 (2002) 301] [hep-th/0109122] [INSPIRE].
  8. [8]
    R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [INSPIRE].ADSGoogle Scholar
  9. [9]
    M. Cvetič, S. Nojiri and S.D. Odintsov, Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein-Gauss-Bonnet gravity, Nucl. Phys. B 628 (2002) 295 [hep-th/0112045] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. Carlip and S. Vaidya, Phase transitions and critical behavior for charged black holes, Class. Quant. Grav. 20 (2003) 3827 [gr-qc/0306054] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  11. [11]
    R.-G. Cai and A. Wang, Thermodynamics and stability of hyperbolic charged black holes, Phys. Rev. D 70 (2004) 064013 [hep-th/0406057] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    Y.S. Myung, No Hawking-Page phase transition in three dimensions, Phys. Lett. B 624 (2005) 297 [hep-th/0506096] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    B.M. Carter and I.P. Neupane, Thermodynamics and stability of higher dimensional rotating (Kerr) AdS black holes, Phys. Rev. D 72 (2005) 043534 [gr-qc/0506103] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    R.-G. Cai, S.P. Kim and B. Wang, Ricci flat black holes and Hawking-Page phase transition in Gauss-Bonnet gravity and dilaton gravity, Phys. Rev. D 76 (2007) 024011 [arXiv:0705.2469] [INSPIRE].MathSciNetADSGoogle Scholar
  15. [15]
    Y.S. Myung, Y.-W. Kim and Y.-J. Park, Thermodynamics and phase transitions in the Born-Infeld-anti-de Sitter black holes, Phys. Rev. D 78 (2008) 084002 [arXiv:0805.0187] [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    Y.S. Myung, Phase transition between non-extremal and extremal Reissner-Nordstrom black holes, Mod. Phys. Lett. A 23 (2008) 667 [arXiv:0710.2568] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    G. Koutsoumbas, E. Papantonopoulos and G. Siopsis, Phase Transitions in Charged Topological-AdS Black Holes, JHEP 05 (2008) 107 [arXiv:0801.4921] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    M. Cadoni, G. D’Appollonio and P. Pani, Phase transitions between Reissner-Nordstrom and dilatonic black holes in 4D AdS spacetime, JHEP 03 (2010) 100 [arXiv:0912.3520] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    H. Liu, H. Lü, M. Luo and K.-N. Shao, Thermodynamical Metrics and Black Hole Phase Transitions, JHEP 12 (2010) 054 [arXiv:1008.4482] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Sahay, T. Sarkar and G. Sengupta, On The Phase Structure and Thermodynamic Geometry of R-Charged Black Holes, JHEP 11 (2010) 125 [arXiv:1009.2236] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    Q.-J. Cao, Y.-X. Chen and K.-N. Shao, Black hole phase transitions in Hořava-Lifshitz gravity, Phys. Rev. D 83 (2011) 064015 [arXiv:1010.5044] [INSPIRE].ADSGoogle Scholar
  22. [22]
    H. Quevedo, A. Sanchez and S. Taj, Thermodynamics of topological black holes in Hořava-Lifshitz gravity, J. Phys. Conf. Ser. 354 (2012) 012015.ADSCrossRefGoogle Scholar
  23. [23]
    H. Quevedo, A. Sanchez, S. Taj and A. Vazquez, Geometrothermodynamics in Hořava-Lifshitz gravity, J. Phys. A 45 (2012) 055211.MathSciNetADSGoogle Scholar
  24. [24]
    R. Banerjee, S.K. Modak and S. Samanta, Glassy Phase Transition and Stability in Black Holes, Eur. Phys. J. C 70 (2010) 317 [arXiv:1002.0466] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R. Banerjee, S.K. Modak and S. Samanta, Second Order Phase Transition and Thermodynamic Geometry in Kerr-AdS Black Hole, Phys. Rev. D 84 (2011) 064024 [arXiv:1005.4832] [INSPIRE].ADSGoogle Scholar
  26. [26]
    R. Banerjee and D. Roychowdhury, Critical phenomena in Born-Infeld AdS black holes, Phys. Rev. D 85 (2012) 044040 [arXiv:1111.0147] [INSPIRE].ADSGoogle Scholar
  27. [27]
    R. Banerjee, S. Ghosh and D. Roychowdhury, New type of phase transition in Reissner Nordstrom - AdS black hole and its thermodynamic geometry, Phys. Lett. B 696 (2011) 156 [arXiv:1008.2644] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    R. Banerjee and D. Roychowdhury, Thermodynamics of phase transition in higher dimensional AdS black holes, JHEP 11 (2011) 004 [arXiv:1109.2433] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    R. Banerjee, S.K. Modak and D. Roychowdhury, A unified picture of phase transition: from liquid-vapour systems to AdS black holes, JHEP 10 (2012) 125 [arXiv:1106.3877] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S.-W. Wei, Y.-X. Liu, Y.-Q. Wang and H. Guo, Thermodynamic Geometry of Black Hole in the Deformed Hořava-Lifshitz Gravity, Europhys. Lett. 99 (2012) 20004 [arXiv:1002.1550] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    B.R. Majhi and D. Roychowdhury, Phase transition and scaling behavior of topological charged black holes in Hořava-Lifshitz gravity, Class. Quant. Grav. 29 (2012) 245012 [arXiv:1205.0146] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    W. Kim and Y. Kim, Phase transition of quantum corrected Schwarzschild black hole, Phys. Lett. B 718 (2012) 687 [arXiv:1207.5318] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    Y.-D. Tsai, X. Wu and Y. Yang, Phase Structure of Kerr-AdS Black Hole, Phys. Rev. D 85 (2012) 044005 [arXiv:1104.0502] [INSPIRE].ADSGoogle Scholar
  34. [34]
    F. Capela and G. Nardini, Hairy Black Holes in Massive Gravity: Thermodynamics and Phase Structure, Phys. Rev. D 86 (2012) 024030 [arXiv:1203.4222] [INSPIRE].ADSGoogle Scholar
  35. [35]
    D. Kubiznak and R.B. Mann, P-V criticality of charged AdS black holes, JHEP 07 (2012) 033 [arXiv:1205.0559] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    S.-W. Wei and Y.-X. Liu, Critical phenomena and thermodynamic geometry of charged Gauss-Bonnet AdS black holes, Phys. Rev. D 87 (2013), no. 4 044014 [arXiv:1209.1707] [INSPIRE].
  37. [37]
    M. Eune, W. Kim and S.-H. Yi, Hawking-Page phase transition in BTZ black hole revisited, JHEP 03 (2013) 020 [arXiv:1301.0395] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    F. Weinhold, Metric geometry of equilibrium thermodynamics, Chem. Phys. 63 (1975) 2479.MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    G. Ruppeiner, A Riemannian geometric model, Phys. Rev. A 20 (1979) 1608.ADSCrossRefGoogle Scholar
  40. [40]
    P. Salamon, E. Ihrig and R.S. Berry, A group of coordinate transformations which preserve the metric of Weinhold, J. Math. Phys. 24 (1983) 2515.MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    R. Mrugala, J. D. Nulton, J. C. Schon and P. Salamon, Statistical approach to the geometric structure of thermodynamics, Phys. Rev. A 41 (1990) 3156.MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    H. Quevedo, Geometrothermodynamics, J. Math. Phys. 48 (2007) 013506 [physics/0604164] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    H. Quevedo, Geometrothermodynamics of black holes, Gen. Rel. Grav. 40 (2008) 971 [arXiv:0704.3102] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  44. [44]
    H. Quevedo and A. Sanchez, Geometrothermodynamics of asymptotically de Sitter black holes, JHEP 09 (2008) 034 [arXiv:0805.3003] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    J.L. Alvarez, H. Quevedo and A. Sanchez, Unified geometric description of black hole thermodynamics, Phys. Rev. D 77 (2008) 084004 [arXiv:0801.2279] [INSPIRE].MathSciNetADSGoogle Scholar
  46. [46]
    H. Quevedo and A. Sanchez, Geometrothermodynamics of black holes in two dimensions, Phys. Rev. D 79 (2009) 087504 [arXiv:0902.4488] [INSPIRE].MathSciNetADSGoogle Scholar
  47. [47]
    H. Quevedo and A. Sanchez, Geometric description of BTZ black holes thermodynamics, Phys. Rev. D 79 (2009) 024012 [arXiv:0811.2524] [INSPIRE].MathSciNetADSGoogle Scholar
  48. [48]
    M. Akbar, H. Quevedo, K. Saifullah, A. Sanchez and S. Taj, Thermodynamic Geometry Of Charged Rotating BTZ Black Holes, Phys. Rev. D 83 (2011) 084031 [arXiv:1101.2722] [INSPIRE].ADSGoogle Scholar
  49. [49]
    H. Quevedo, A. Sanchez, S. Taj and A. Vazquez, Phase transitions in geometrothermodynamics, Gen. Rel. Grav. 43 (2011) 1153 [arXiv:1010.5599] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  50. [50]
    A. Aviles, A. Bastarrachea-Almodovar, L. Campuzano and H. Quevedo, Extending the generalized Chaplygin gas model by using geometrothermodynamics, Phys. Rev. D 86 (2012) 063508 [arXiv:1203.4637] [INSPIRE].ADSGoogle Scholar
  51. [51]
    Y.-W. Han and G. Chen, Thermodynamics, geometrothermodynamics and critical behavior of (2+1)-dimensional black holes, Phys. Lett. B 714 (2012) 127 [arXiv:1207.5626] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    P. Hořava, Quantum Gravity at a Lifshitz Point, Phys. Rev. D 79 (2009) 084008 [arXiv:0901.3775] [INSPIRE].ADSGoogle Scholar
  53. [53]
    P. Hořava, Membranes at Quantum Criticality, JHEP 03 (2009) 020 [arXiv:0812.4287] [INSPIRE].ADSGoogle Scholar
  54. [54]
    P. Hořava, Spectral Dimension of the Universe in Quantum Gravity at a Lifshitz Point, Phys. Rev. Lett. 102 (2009) 161301 [arXiv:0902.3657] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    H. Lü, J. Mei and C. Pope, Solutions to Hořava Gravity, Phys. Rev. Lett. 103 (2009) 091301 [arXiv:0904.1595] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    R.-G. Cai, L.-M. Cao and N. Ohta, Topological Black Holes in Hořava-Lifshitz Gravity, Phys. Rev. D 80 (2009) 024003 [arXiv:0904.3670] [INSPIRE].MathSciNetADSGoogle Scholar
  57. [57]
    E. O Colgain and H. Yavartanoo, Dyonic solution of Hořava-Lifshitz Gravity, JHEP 08 (2009) 021 [arXiv:0904.4357] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A. Kehagias and K. Sfetsos, The Black hole and FRW geometries of non-relativistic gravity, Phys. Lett. B 678 (2009) 123 [arXiv:0905.0477] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    E. Kiritsis, Spherically symmetric solutions in modified Hořava-Lifshitz gravity, Phys. Rev. D 81 (2010) 044009 [arXiv:0911.3164] [INSPIRE].MathSciNetADSGoogle Scholar
  60. [60]
    R.-G. Cai, L.-M. Cao and N. Ohta, Thermodynamics of Black Holes in Hořava-Lifshitz Gravity, Phys. Lett. B 679 (2009) 504 [arXiv:0905.0751] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    R.-G. Cai and N. Ohta, Horizon Thermodynamics and Gravitational Field Equations in Hořava-Lifshitz Gravity, Phys. Rev. D 81 (2010) 084061 [arXiv:0910.2307] [INSPIRE].ADSGoogle Scholar
  62. [62]
    D.-Y. Chen, H. Yang and X.-T. Zu, Hawking radiation of black holes in the z = 4 Hořava-Lifshitz gravity, Phys. Lett. B 681 (2009) 463 [arXiv:0910.4821] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    X. Gao, Y. Wang, W. Xue and R. Brandenberger, Fluctuations in a Hořava-Lifshitz Bouncing Cosmology, JCAP 02 (2010) 020 [arXiv:0911.3196] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    A. Castillo and A. Larranaga, Entropy for Black Holes in the Deformed Hořava-Lifshitz Gravity, Electron. J. Theor. Phys. 8 (2011), no. 25 83-92 [arXiv:0906.4380] [INSPIRE].Google Scholar
  65. [65]
    B.R. Majhi, Hawking radiation and black hole spectroscopy in Hořava-Lifshitz gravity, Phys. Lett. B 686 (2010) 49 [arXiv:0911.3239] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  66. [66]
    J.-J. Peng and S.-Q. Wu, Hawking Radiation of Black Holes in Infrared Modified Hořava-Lifshitz Gravity, Eur. Phys. J. C 66 (2010) 325 [arXiv:0906.5121] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    Y.S. Myung, Entropy of black holes in the deformed Hořava-Lifshitz gravity, Phys. Lett. B 684 (2010) 158 [arXiv:0908.4132] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    Y.S. Myung and Y.-W. Kim, Thermodynamics of Hořava-Lifshitz black holes, Eur. Phys. J. C 68 (2010) 265 [arXiv:0905.0179] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    Y.S. Myung, Y.-W. Kim and Y.-J. Park, Ruppeiner geometry and 2D dilaton gravity in the thermodynamics of black holes, Phys. Lett. B 663 (2008) 342 [arXiv:0802.2152] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  70. [70]
    H. Quevedo, A. Sanchez and S. Taj, On the ensemble dependence in black hole geometrothermodynamics, arXiv:1304.3954 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Jie-Xiong Mo
    • 1
    • 2
  • Xiao-Xiong Zeng
    • 3
    • 1
  • Gu-Qiang Li
    • 2
  • Xin Jiang
    • 1
  • Wen-Biao Liu
    • 1
  1. 1.Department of Physics, Institute of Theoretical PhysicsBeijing Normal UniversityBeijingChina
  2. 2.Institute of Theoretical PhysicsZhanjiang Normal UniversityZhanjiangChina
  3. 3.School of ScienceChongqing Jiaotong UniversityNananChina

Personalised recommendations