Advertisement

Journal of High Energy Physics

, 2012:177 | Cite as

Three-point functions of twist-two operators in \( \mathcal{N}=4 \) SYM at one loop

  • Jan Plefka
  • Konstantin Wiegandt
Article

Abstract

We calculate three-point functions of two protected operators and one twist-two operator with arbitrary even spin j in \( \mathcal{N}=4 \) super Yang-Mills theory to one-loop order. In order to carry out the calculations we project the indices of the spin j operator to the light-cone and evaluate the correlator in a soft-limit where the momentum coming in at the spin j operator becomes zero. This limit largely simplifies the perturbative calculation, since all three-point diagrams effectively reduce to two-point diagrams and the dependence on the one-loop mixing matrix drops out completely. The results of our direct calculation are in agreement with the structure constants obtained by F.A. Dolan and H. Osborn from the operator product expansion of four-point functions of half-BPS operators.

Keywords

Supersymmetric gauge theory AdS-CFT Correspondence Conformal and W Symmetry 

References

  1. [1]
    J. Minahan and K. Zarembo, The Bethe ansatz for N = 4 super Yang-Mills, JHEP 03 (2003)013 [hep-th/0212208] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    N. Beisert, C. Kristjansen and M. Staudacher, The dilatation operator of conformal N = 4 super Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS 5 × S 5 superstring, Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    N. Beisert and M. Staudacher, The N = 4 SYM integrable super spin chain, Nucl. Phys. B 670 (2003)439 [hep-th/0307042] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].MathSciNetADSzbMATHGoogle Scholar
  6. [6]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSzbMATHGoogle Scholar
  7. [7]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    N. Beisert, C. Ahn, L.F. Alday, Z. Bajnok, J.M. Drummond, et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    M. Staudacher, The factorized S-matrix of CFT/AdS, JHEP 05 (2005) 054 [hep-th/0412188] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. 0701 (2007) P01021 [hep-th/0610251] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007)064 [arXiv:0705.0303] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    G. Korchemsky, J. Drummond and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].MathSciNetADSGoogle Scholar
  15. [15]
    A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    L.F. Alday and R. Roiban, Scattering amplitudes, Wilson loops and the string/gauge theory correspondence, Phys. Rept. 468 (2008) 153 [arXiv:0807.1889] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    J. Henn, Duality between Wilson loops and gluon amplitudes, Fortsch. Phys. 57 (2009) 729 [arXiv:0903.0522] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. [18]
    S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three point functions of chiral operators in D = 4 N = 4 SYM at large-N , Adv. Theor. Math. Phys. 2 (1998) 697 [hep-th/9806074] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  19. [19]
    B. Eden, P.S. Howe and P.C. West, Nilpotent invariants in N = 4 SYM, Phys. Lett. B 463 (1999)19 [hep-th/9905085] [INSPIRE].
  20. [20]
    G. Arutyunov, B. Eden and E. Sokatchev, On nonrenormalization and OPE in superconformal field theories, Nucl. Phys. B 619 (2001) 359 [hep-th/0105254] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    P. Heslop and P.S. Howe, OPEs and three-point correlators of protected operators in N = 4 SYM, Nucl. Phys. B 626 (2002) 265 [hep-th/0107212] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    A. Basu, M.B. Green and S. Sethi, Some systematics of the coupling constant dependence of N =4 Yang-Mills,JHEP 09(2004)045 [hep-th/0406231][INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    M. Baggio, J. de Boer and K. Papadodimas, A non-renormalization theorem for chiral primary 3-point functions, JHEP 07 (2012) 137 [arXiv:1203.1036] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Bianchi, S. Kovacs, G. Rossi and Y.S. Stanev, Properties of the Konishi multiplet in N =4 SYM theory,JHEP 05(2001)042 [hep-th/0104016][INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    N. Beisert, C. Kristjansen, J. Plefka, G. Semenoff and M. Staudacher, BMN correlators and operator mixing in N = 4 super Yang-Mills theory, Nucl. Phys. B 650 (2003) 125 [hep-th/0208178] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    C.-S. Chu, V.V. Khoze and G. Travaglini, Three point functions in N = 4 Yang-Mills theory and pp waves, JHEP 06 (2002) 011 [hep-th/0206005] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    R. Roiban and A. Volovich, Yang-Mills correlation functions from integrable spin chains, JHEP 09 (2004) 032 [hep-th/0407140] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    K. Okuyama and L.-S. Tseng, Three-point functions in N = 4 SYM theory at one-loop, JHEP 08 (2004) 055 [hep-th/0404190] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    L.F. Alday, J.R. David, E. Gava and K. Narain, Structure constants of planar N = 4 Yang-Mills at one loop, JHEP 09 (2005) 070 [hep-th/0502186] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    L.F. Alday, J.R. David, E. Gava and K. Narain, Towards a string bit formulation of N = 4 super Yang-Mills, JHEP 04 (2006) 014 [hep-th/0510264] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    G. Georgiou, V.L. Gili and R. Russo, Operator mixing and the AdS/CFT correspondence, JHEP 01 (2009) 082 [arXiv:0810.0499] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    G. Georgiou, V.L. Gili and R. Russo, Operator mixing and three-point functions in N = 4 SYM, JHEP 10 (2009) 009 [arXiv:0907.1567] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    G. Georgiou, V. Gili, A. Grossardt and J. Plefka, Three-point functions in planar N = 4 super Yang-Mills theory for scalar operators up to length five at the one-loop order, JHEP 04 (2012)038 [arXiv:1201.0992] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    J. Escobedo, N. Gromov, A. Sever and P. Vieira, Tailoring three-point functions and integrability, JHEP 09 (2011) 028 [arXiv:1012.2475] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    J. Escobedo, N. Gromov, A. Sever and P. Vieira, Tailoring three-point functions and integrability II. Weak/strong coupling match, JHEP 09 (2011) 029 [arXiv:1104.5501] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    N. Gromov, A. Sever and P. Vieira, Tailoring three-point functions and integrability III. Classical tunneling, JHEP 07 (2012) 044 [arXiv:1111.2349] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    I. Kostov, Classical limit of the three-point function of N = 4 supersymmetric Yang-Mills theory from integrability, Phys. Rev. Lett. 108 (2012) 261604 arXiv:1203.6180] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    N. Gromov and P. Vieira, Quantum integrability for three-point functions, arXiv:1202.4103 [INSPIRE].
  39. [39]
    J. Russo and A. Tseytlin, Large spin expansion of semiclassical 3-point correlators in AdS 5 × S 5, JHEP 02 (2011) 029 [arXiv:1012.2760] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    A. Bissi, C. Kristjansen, D. Young and K. Zoubos, Holographic three-point functions of giant gravitons, JHEP 06 (2011) 085 [arXiv:1103.4079] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    A. Bissi, T. Harmark and M. Orselli, Holographic 3-point function at one loop, JHEP 02 (2012)133 [arXiv:1112.5075] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    G. Grignani and A. Zayakin, Matching three-point functions of BMN operators at weak and strong coupling, JHEP 06 (2012) 142 [arXiv:1204.3096] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    G. Grignani, A. Zayakin and A. Zayakin, Three-point functions of BMN operators at weak and strong coupling II. One loop matching, JHEP 09 (2012) 087 [arXiv:1205.5279] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    G. Georgiou, SL(2) sector: weak/strong coupling agreement of three-point correlators, JHEP 09 (2011) 132 [arXiv:1107.1850] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    E. Fradkin and M. Palchik, Conformal quantum field theory in D-dimensions, Springer, Berlin Germany (1994).Google Scholar
  46. [46]
    G. Sotkov and R. Zaikov, Conformal invariant two point and three point functions for fields with arbitrary spin, Rept. Math. Phys. 12 (1977) 375 .ADSCrossRefGoogle Scholar
  47. [47]
    V. Dobrev, V. Petkova, S. Petrova and I. Todorov, Dynamical derivation of vacuum operator product expansion in Euclidean conformal quantum field theory, Phys. Rev. D 13 (1976) 887 [INSPIRE].ADSGoogle Scholar
  48. [48]
    A. Belitsky, J. Henn, C. Jarczak, D. Mueller and E. Sokatchev, Anomalous dimensions of leading twist conformal operators, Phys. Rev. D 77 (2008) 045029 [arXiv:0707.2936] [INSPIRE].ADSGoogle Scholar
  49. [49]
    F. Dolan and H. Osborn, Conformal partial wave expansions for N = 4 chiral four point functions, Annals Phys. 321 (2006) 581 [hep-th/0412335] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  50. [50]
    B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, Hidden symmetry of four-point correlation functions and amplitudes in N = 4 SYM, Nucl. Phys. B 862 (2012) 193 [arXiv:1108.3557] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    B. Eden, Three-loop universal structure constants in N = 4 SUSY Yang-Mills theory, arXiv:1207.3112 [INSPIRE].
  52. [52]
    K. Wiegandt, Superconformal quantum field theories in string-gauge theory dualities, Ph.D. Thesis, Humboldt-Universität zu Berlin, Berlin Germany (2012).Google Scholar
  53. [53]
    M.S. Costa, R. Monteiro, J.E. Santos and D. Zoakos, On three-point correlation functions in the gauge/gravity duality, JHEP 11 (2010) 141 [arXiv:1008.1070] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    N.I. Usyukina and A.I. Davydychev, New results for two loop off-shell three point diagrams, Phys. Lett. B 332 (1994) 159 [hep-ph/9402223] [INSPIRE].ADSGoogle Scholar
  55. [55]
    D. Kazakov and A. Kotikov, The method of uniqueness: multiloop calculations in QCD, Theor. Math. Phys. 73 (1988) 1264 [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    T. Ohrndorf, Constraints from conformal covariance on the mixing of operators of lowest twist, Nucl. Phys. B 198 (1982) 26 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    Y. Makeenko, Conformal operators in quantum chromodynamics, Sov. J. Nucl. Phys. 33 (1981)440 [INSPIRE].MathSciNetGoogle Scholar
  58. [58]
    V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts Mod. Phys. 211 (2004) 1.CrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Institut für Theoretische PhysikUniversität HamburgHamburgGermany

Personalised recommendations