Journal of High Energy Physics

, 2012:174 | Cite as

Duality invariant M-theory: gauged supergravities and Scherk-Schwarz reductions

  • David S. Berman
  • Edvard T. Musaev
  • Daniel C. Thompson
Article

Abstract

We consider the reduction of the duality invariant approach to M-theory by a U-duality group valued Scherk-Schwarz twist. The result is to produce potentials for gauged supergravities that are normally associated with non-geometric compactifications. The local symmetry reduces to gauge transformations with the gaugings exactly matching those of the embedding tensor approach to gauged supergravity. Importantly, this approach now includes a nontrivial dependence of the fields on the extra coordinates of the extended space.

Keywords

Space-Time Symmetries Global Symmetries M-Theory String Duality 

References

  1. [1]
    J. Scherk and J.H. Schwarz, How to Get Masses from Extra Dimensions, Nucl. Phys. B 153 (1979) 61 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    O. Hohm and S.K. Kwak, Frame-like Geometry of Double Field Theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    O. Hohm and B. Zwiebach, On the Riemann Tensor in Double Field Theory, JHEP 05 (2012) 126 [arXiv:1112.5296] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    O. Hohm and S.K. Kwak, N=1 Supersymmetric Double Field Theory, JHEP 03 (2012) 080 [arXiv:1111.7293] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: Application to double field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].ADSGoogle Scholar
  10. [10]
    I. Jeon, K. Lee and J.-H. Park, Supersymmetric Double Field Theory: Stringy Reformulation of Supergravity, Phys. Rev. D 85 (2012) 081501 [arXiv:1112.0069] [INSPIRE].ADSGoogle Scholar
  11. [11]
    G. Aldazabal, W. Baron, D. Marques and C. Núñez, The effective action of Double Field Theory, JHEP 11 (2011) 052 [Erratum ibid. 1111 (2011) 109] [arXiv:1109.0290] [INSPIRE].
  12. [12]
    D. Geissbuhler, Double Field Theory and N = 4 Gauged Supergravity, JHEP 11 (2011) 116 [arXiv:1109.4280] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    M. Graña and D. Marques, Gauged Double Field Theory, JHEP 04 (2012) 020 [arXiv:1201.2924] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Flournoy, B. Wecht and B. Williams, Constructing nongeometric vacua in string theory, Nucl. Phys. B 706 (2005) 127 [hep-th/0404217] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    C. Hull and R. Reid-Edwards, Flux compactifications of string theory on twisted tori, Fortsch. Phys. 57 (2009) 862 [hep-th/0503114] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  17. [17]
    A. Dabholkar and C. Hull, Generalised T-duality and non-geometric backgrounds, JHEP 05 (2006) 009 [hep-th/0512005] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    C. Hull and R. Reid-Edwards, Flux compactifications of M-theory on twisted Tori, JHEP 10 (2006) 086 [hep-th/0603094] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    B. Wecht, Lectures on Nongeometric Flux Compactifications, Class. Quant. Grav. 24 (2007) S773 [arXiv:0708.3984] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  20. [20]
    M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, Generalized Geometry and Non-Geometric Backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    C. Hull and R. Reid-Edwards, Non-geometric backgrounds, doubled geometry and generalised T-duality, JHEP 09 (2009) 014 [arXiv:0902.4032] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    G. Dibitetto, A. Guarino and D. Roest, Exceptional Flux Compactifications, JHEP 05 (2012) 056 [arXiv:1202.0770] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G. Dibitetto, J. Fernandez-Melgarejo, D. Marques and D. Roest, Duality orbits of non-geometric fluxes, arXiv:1203.6562 [INSPIRE].
  24. [24]
    O. Hohm and S.K. Kwak, Massive Type II in Double Field Theory, JHEP 11 (2011) 086 [arXiv:1108.4937] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    C. Hillmann, Generalized E(7(7)) coset dynamics and D = 11 supergravity, JHEP 03 (2009) 135 [arXiv:0901.1581] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    D.S. Berman and M.J. Perry, Generalized Geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    D.S. Berman, H. Godazgar and M.J. Perry, SO(5,5) duality in M-theory and generalized geometry, Phys. Lett. B 700 (2011) 65 [arXiv:1103.5733] [INSPIRE].MathSciNetADSGoogle Scholar
  28. [28]
    D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality Invariant Actions and Generalised Geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    D.S. Berman, H. Godazgar, M. Godazgar and M.J. Perry, The local symmetries of M-theory and their formulation in generalised geometry, JHEP 01 (2012) 012 [arXiv:1110.3930] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    C. Hull, Generalised Geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P.P. Pacheco and D. Waldram, M-theory, exceptional generalised geometry and superpotentials, JHEP 09 (2008) 123 [arXiv:0804.1362] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    E. Malek, U-duality in three and four dimensions, arXiv:1205.6403 [INSPIRE].
  33. [33]
    A. Chatzistavrakidis and L. Jonke, Matrix theory origins of non-geometric fluxes, arXiv:1207.6412 [INSPIRE].
  34. [34]
    H. Samtleben and M. Weidner, The maximal D = 7 supergravities, Nucl. Phys. B 725 (2005) 383 [hep-th/0506237] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    A. Le Diffon and H. Samtleben, Supergravities without an Action: Gauging the Trombone, Nucl. Phys. B 811 (2009) 1 [arXiv:0809.5180] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    F. Riccioni and P.C. West, E 11 -extended spacetime and gauged supergravities, JHEP 02 (2008) 039 [arXiv:0712.1795] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    B. de Wit, H. Nicolai and H. Samtleben, Gauged Supergravities, Tensor Hierarchies and M-theory, JHEP 02 (2008) 044 [arXiv:0801.1294] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    M. Duff and J. Lu, Duality rotations in membrane theory, Nucl. Phys. B 347 (1990) 394 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    A. Coimbra, C. Strickland-Constable and D. Waldram, \( {E_{d(d) }}\times {{\mathbb{R}}^{+}} \) Generalised Geometry, Connections and M-theory, arXiv:1112.3989 [INSPIRE].
  40. [40]
    H. Samtleben, Lectures on Gauged Supergravity and Flux Compactifications, Class. Quant. Grav. 25 (2008) 214002 [arXiv:0808.4076] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    D.C. Thompson, Duality Invariance: From M-theory to Double Field Theory, JHEP 08 (2011) 125 [arXiv:1106.4036] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for non-geometric fluxes, Phys. Rev. Lett. 108 (2012) 261602 [arXiv:1202.3060] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, Non-Geometric Fluxes in Supergravity and Double Field Theory, arXiv:1204.1979 [INSPIRE].
  45. [45]
    K. Peeters, Introducing Cadabra: A Symbolic computer algebra system for field theory problems, hep-th/0701238 [INSPIRE].
  46. [46]
    K. Peeters, A field-theory motivated approach to symbolic computer algebra, Comput. Phys. Commun. 176 (2007) 550 [INSPIRE].ADSMATHCrossRefGoogle Scholar
  47. [47]
    O. Hohm, B. Zwiebach and B. Zwiebach, Large Gauge Transformations in Double Field Theory, arXiv:1207.4198 [INSPIRE].
  48. [48]
    D.S. Berman, M. Cederwall, A. Kleinschmidt and D. C. Thompson, The gauge structure of generalised diffeomorphisms, arXiv:1208.5884 [INSPIRE].
  49. [49]
    E. Bergshoeff, H. Samtleben and E. Sezgin, The Gaugings of Maximal D = 6 Supergravity, JHEP 03 (2008) 068 [arXiv:0712.4277] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    B. de Wit, H. Samtleben and M. Trigiante, The Maximal D = 5 supergravities, Nucl. Phys. B 716 (2005) 215 [hep-th/0412173] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • David S. Berman
    • 1
  • Edvard T. Musaev
    • 1
  • Daniel C. Thompson
    • 2
  1. 1.Queen Mary University of London, Centre for Research in String Theory, School of PhysicsLondonEngland
  2. 2.Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay InstitutesBrusselsBelgium

Personalised recommendations