Journal of High Energy Physics

, 2012:167 | Cite as

Magnetic domains

Article

Abstract

Recently a Nahm transform has been discovered for magnetic bags, which are conjectured to arise in the large n limit of magnetic monopoles of charge n. We interpret these ideas using string theory and present evidence for this conjecture. Our main result concerns the extension of the notion of bags and their Nahm transform to higher gauge theories and arbitrary domains. Bags in four dimensions conjecturally describe the large n limit of n self-dual strings. We show that the corresponding Basu-Harvey equation is the large n limit of an equation describing n M2-branes, and that it has a natural interpretation in loop space. We also formulate our Nahm equations using strong homotopy Lie algebras.

Keywords

Integrable Equations in Physics D-branes Differential and Algebraic Geometry M-Theory 

References

  1. [1]
    D.-E. Diaconescu, D-branes, monopoles and Nahm equations, Nucl. Phys. B 503 (1997) 220 [hep-th/9608163] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    D. Tsimpis, Nahm equations and boundary conditions, Phys. Lett. B 433 (1998) 287 [hep-th/9804081] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    W. Nahm, All selfdual multi-monopoles for arbitrary gauge groups, presented at Int. Summer Inst. on Theoretical Physics, Freiburg West Germany, 31 August – 11 September 1981.Google Scholar
  4. [4]
    N.J. Hitchin, On the construction of monopoles, Commun. Math. Phys. 89 (1983) 145 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  5. [5]
    P.S. Howe, N. Lambert and P.C. West, The selfdual string soliton, Nucl. Phys. B 515 (1998) 203 [hep-th/9709014] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    A. Basu and J.A. Harvey, The M2-M5 brane system and a generalized Nahms equation, Nucl. Phys. B 713 (2005) 136 [hep-th/0412310] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    S. Terashima, On M5-branes in \( \mathcal{N}=6 \) membrane action, JHEP 08 (2008) 080 [arXiv:0807.0197] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, A massive study of M2-brane proposals, JHEP 09 (2008) 113 [arXiv:0807.1074] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    K. Hanaki and H. Lin, M2-M5 systems in N = 6 Chern-Simons theory, JHEP 09 (2008) 067 [arXiv:0807.2074] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    D. Harland, The large N limit of the Nahm transform, Commun. Math. Phys. 311 (2012) 689 [arXiv:1102.3048] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  11. [11]
    S. Bolognesi, Multi-monopoles, magnetic bags, bions and the monopole cosmological problem, Nucl. Phys. B 752 (2006) 93 [hep-th/0512133] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    P.-M. Ho and Y. Matsuo, M5 from M2, JHEP 06 (2008) 105 [arXiv:0804.3629] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    A. Gustavsson, Selfdual strings and loop space Nahm equations, JHEP 04 (2008) 083 [arXiv:0802.3456] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    C. Sämann, Constructing self-dual strings, Commun. Math. Phys. 305 (2011) 513 [arXiv:1007.3301] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  15. [15]
    S. Palmer and C. Sämann, Constructing generalized self-dual strings, JHEP 10 (2011) 008 [arXiv:1105.3904] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    G.V. Dunne and V. Khemani, Numerical investigation of monopole chains, J. Phys. A 38 (2005) 9359 [hep-th/0506209] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    D. Harland and R.S. Ward, Dynamics of periodic monopoles, Phys. Lett. B 675 (2009) 262 [arXiv:0901.4428] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    S.A. Cherkis and A. Kapustin, Nahm transform for periodic monopoles and N = 2 super Yang-Mills theory, Commun. Math. Phys. 218 (2001) 333 [hep-th/0006050] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  19. [19]
    R. Ward, Periodic monopoles, Phys. Lett. B 619 (2005) 177 [hep-th/0505254] [INSPIRE].ADSGoogle Scholar
  20. [20]
    K.-M. Lee, Sheets of BPS monopoles and instantons with arbitrary simple gauge group, Phys. Lett. B 445 (1999) 387 [hep-th/9810110] [INSPIRE].ADSGoogle Scholar
  21. [21]
    R. Ward, A monopole wall, Phys. Rev. D 75 (2007) 021701 [hep-th/0612047] [INSPIRE].ADSGoogle Scholar
  22. [22]
    K.-M. Lee and E.J. Weinberg, BPS magnetic monopole bags, Phys. Rev. D 79 (2009) 025013 [arXiv:0810.4962] [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    N. Manton, Monopole planets and galaxies, Phys. Rev. D 85 (2012) 045022 [arXiv:1111.2934] [INSPIRE].ADSGoogle Scholar
  24. [24]
    P. Sutcliffe, Monopoles in AdS, JHEP 08 (2011) 032 [arXiv:1104.1888] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    F. Berezin, General concept of quantization, Commun. Math. Phys. 40 (1975) 153 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    A. Balachandran, S. Kurkcuoglu and S. Vaidya, Lectures on fuzzy and fuzzy SUSY physics, hep-th/0511114 [INSPIRE].
  27. [27]
    C. Iuliu-Lazaroiu, D. McNamee and C. Sämann, Generalized Berezin quantization, Bergman metrics and fuzzy Laplacians, JHEP 09 (2008) 059 [arXiv:0804.4555] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Bordemann, E. Meinrenken and M. Schlichenmaier, Toeplitz quantization of Kähler manifolds and \( \mathfrak{gl}(N) \) , N → ∞ limits, Commun. Math. Phys. 165 (1994) 281 [hep-th/9309134] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  29. [29]
    M. Schlichenmaier, Berezin-Toeplitz quantization and Berezin symbols for arbitrary compact Kähler manifolds, math/9902066 [INSPIRE].
  30. [30]
    R.E. Greene and K. Shiohama, Diffeomorphisms and volume-preserving embeddings of noncompact manifolds, Trans. Amer. Math. Soc. 225 (1979) 403.MathSciNetCrossRefGoogle Scholar
  31. [31]
    M. Dunajski, Harmonic functions, central quadrics and twistor theory, Class. Quant. Grav. 20 (2003) 3427 [math/0303181] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  32. [32]
    D. McDuff and D. Salamon, Introduction to symplectic topology, Oxford University Press, Oxford U.K. (1999).Google Scholar
  33. [33]
    G. Chalmers and A. Hanany, Three-dimensional gauge theories and monopoles, Nucl. Phys. B 489 (1997) 223 [hep-th/9608105] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].MathSciNetADSGoogle Scholar
  35. [35]
    S.A. Cherkis, Moduli spaces of instantons on the Taub-NUT space, Commun. Math. Phys. 290 (2009) 719 [arXiv:0805.1245] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  36. [36]
    S.A. Cherkis, C. O’Hara and C. Sämann, Super Yang-Mills Theory with impurity walls and instanton moduli spaces, Phys. Rev. D 83 (2011) 126009 [arXiv:1103.0042] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S.A. Cherkis and R.S. Ward, Moduli of monopole walls and amoebas, JHEP 05 (2012) 090 [arXiv:1202.1294] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    J. Hurtubise and M. Murray, On the construction of monopoles for the classical groups, Commun. Math. Phys. 122 (1989) 35 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  40. [40]
    R.C. Myers, Dielectric branes, JHEP 12 (1999) 022 [hep-th/9910053] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    N.R. Constable, R.C. Myers and O. Tafjord, The noncommutative bion core, Phys. Rev. D 61 (2000) 106009 [hep-th/9911136] [INSPIRE].MathSciNetADSGoogle Scholar
  42. [42]
    V.T. Filippov, n-Lie algebras, Sib. Mat. Zh. 26 (1985) 126.MATHGoogle Scholar
  43. [43]
    P.-A. Nagy, Prolongations of Lie algebras and applications, arXiv:0712.1398.
  44. [44]
    Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D 7 (1973) 2405 [INSPIRE].MathSciNetADSGoogle Scholar
  45. [45]
    L. Takhtajan, On foundation of the generalized Nambu mechanics (second version), Commun. Math. Phys. 160 (1994) 295 [hep-th/9301111] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  46. [46]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, \( \mathcal{N}=6 \) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    J. Bagger and N. Lambert, Three-algebras and \( \mathcal{N}=6 \) Chern-Simons gauge theories, Phys. Rev. D 79 (2009) 025002 [arXiv:0807.0163] [INSPIRE].MathSciNetADSGoogle Scholar
  48. [48]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].MathSciNetADSGoogle Scholar
  49. [49]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    J.C. Baez, A.E. Hoffnung and C.L. Rogers, Categorified symplectic geometry and the classical string, Commun. Math. Phys. 293 (2010) 701 [arXiv:0808.0246] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  51. [51]
    M. Forger, C. Paufler and H. Roemer, The Poisson bracket for Poisson forms in multisymplectic field theory, Rev. Math. Phys. 15 (2003) 705 [math-ph/0202043] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  52. [52]
    J.-L. Brylinski, Loop spaces, characteristic classes and geometric quantization, Birkhäuser, Boston U.S.A. (2007).Google Scholar
  53. [53]
    A. Ashtekar, T. Jacobson and L. Smolin, A new characterization of half flat solutions to Einsteins equation, Commun. Math. Phys. 115 (1988) 631 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  54. [54]
    T. Lada and J. Stasheff, Introduction to SH Lie algebras for physicists, Int. J. Theor. Phys. 32 (1993) 1087 [hep-th/9209099] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  55. [55]
    T. Lada and M. Markl, Strongly homotopy Lie algebras, hep-th/9406095 [INSPIRE].
  56. [56]
    S. Merkulov, An L -algebra of an unobstructed deformation functor, Int. Math. Res. Not. 3 (2000) 147 [math.AG/9907031].MathSciNetCrossRefGoogle Scholar
  57. [57]
    C. Lazaroiu, String field theory and brane superpotentials, JHEP 10 (2001) 018 [hep-th/0107162] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    S. Palmer and C. Sämann, M-brane models from non-abelian gerbes, JHEP 07 (2012) 010 [arXiv:1203.5757] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    J.C. Baez and A.S. Crans, Higher-dimensional algebra VI: Lie 2-algebras, Theor. Appl. Categor. 12 (2004) 492 [math/0307263] [INSPIRE].MathSciNetMATHGoogle Scholar
  60. [60]
    C. Iuliu-Lazaroiu, D. McNamee, C. Sämann and A. Zejak, Strong homotopy Lie algebras, generalized Nahm equations and multiple M2-branes, arXiv:0901.3905 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of Mathematical SciencesLoughborough UniversityLoughboroughUK
  2. 2.Department of Mathematics and Maxwell Institute for Mathematical SciencesHeriot-Watt UniversityEdinburghUK

Personalised recommendations