Advertisement

Journal of High Energy Physics

, 2012:163 | Cite as

Building an explicit de Sitter

  • Jan Louis
  • Markus RummelEmail author
  • Roberto Valandro
  • Alexander Westphal
Open Access
Article

Abstract

We construct an explicit example of a de Sitter vacuum in type IIB string theory that realizes the proposal of Kähler uplifting. As the large volume limit in this method depends on the rank of the largest condensing gauge group we carry out a scan of gauge group ranks over the Kreuzer-Skarke set of toric Calabi-Yau threefolds. We find large numbers of models with the largest gauge group factor easily exceeding a rank of one hundred. We construct a global model with Kähler uplifting on a two-parameter model on \( \mathbb{CP}_{11169}^4 \), by an explicit analysis from both the type IIB and F-theory point of view. The explicitness of the construction lies in the realization of a D7 brane configuration, gauge flux and RR and NS flux choices, such that all known consistency conditions are met and the geometric moduli are stabilized in a metastable de Sitter vacuum with spontaneous GUT scale supersymmetry breaking driven by an F-term of the Kähler moduli.

Keywords

Flux compactifications F-Theory dS vacua in string theory Superstring Vacua 

References

  1. [1]
    M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. [3]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    L. McAllister and E. Silverstein, String cosmology: a review, Gen. Rel. Grav. 40 (2008) 565 [arXiv:0710.2951] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. [5]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE]MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    E. Silverstein, Simple de Sitter solutions, Phys. Rev. D 77 (2008) 106006 [arXiv:0712.1196] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    C. Caviezel et al., The Effective theory of type IIA AdS 4 compactifications on nilmanifolds and cosets, Class. Quant. Grav. 26 (2009) 025014 [arXiv:0806.3458] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    S.S. Haque, G. Shiu, B. Underwood and T. Van Riet, Minimal simple de Sitter solutions, Phys. Rev. D 79 (2009) 086005 [arXiv:0810.5328] [INSPIRE].ADSGoogle Scholar
  12. [12]
    C. Caviezel et al., On the cosmology of Type IIA compactifications on SU(3)-structure manifolds, JHEP 04 (2009) 010 [arXiv:0812.3551] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    R. Flauger, S. Paban, D. Robbins and T. Wrase, Searching for slow-roll moduli inflation in massive type IIA supergravity with metric fluxes, Phys. Rev. D 79 (2009) 086011 [arXiv:0812.3886] [INSPIRE].ADSGoogle Scholar
  14. [14]
    J. Polchinski and E. Silverstein, Dual purpose landscaping tools: small extra dimensions in AdS/CFT, arXiv:0908.0756 [INSPIRE].
  15. [15]
    X. Dong, B. Horn, E. Silverstein and G. Torroba, Micromanaging de Sitter holography, Class. Quant. Grav. 27 (2010) 245020 [arXiv:1005.5403] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    X. Dong, B. Horn, S. Matsuura, E. Silverstein and G. Torroba, FRW solutions and holography from uplifted AdS/CFT, Phys. Rev. D 85 (2012) 104035 [arXiv:1108.5732] [INSPIRE].ADSGoogle Scholar
  17. [17]
    V. Balasubramanian and P. Berglund, Stringy corrections to Kähler potentials, SUSY breaking and the cosmological constant problem, JHEP 11 (2004) 085 [hep-th/0408054] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    C. Burgess, R. Kallosh and F. Quevedo, de Sitter string vacua from supersymmetric D terms, JHEP 10 (2003) 056 [hep-th/0309187] [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    O. Lebedev, H.P. Nilles and M. Ratz, de Sitter vacua from matter superpotentials, Phys. Lett. B 636 (2006) 126 [hep-th/0603047] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    M. Haack, D. Krefl, D. Lüst, A. Van Proeyen and M. Zagermann, Gaugino condensates and D-terms from D7-branes, JHEP 01 (2007) 078 [hep-th/0609211] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D. Cremades, M.-P. Garcia del Moral, F. Quevedo and K. Suruliz, Moduli stabilisation and de Sitter string vacua from magnetised D7 branes, JHEP 05 (2007) 100 [hep-th/0701154] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    S. Krippendorf and F. Quevedo, Metastable SUSY Breaking, de Sitter Moduli Stabilisation and Kähler Moduli Inflation, JHEP 11 (2009) 039 [arXiv:0901.0683] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Rummel and A. Westphal, A sufficient condition for de Sitter vacua in type IIB string theory, JHEP 01 (2012) 020 [arXiv:1107.2115] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    M. Cicoli, A. Maharana, F. Quevedo and C. Burgess, de Sitter string vacua from dilaton-dependent non-perturbative effects, JHEP 06 (2012) 011 [arXiv:1203.1750] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D-Branes at del Pezzo singularities: global embedding and moduli stabilisation, JHEP 09 (2012) 019 [arXiv:1206.5237] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    J.L. Feng, J. March-Russell, S. Sethi and F. Wilczek, Saltatory relaxation of the cosmological constant, Nucl. Phys. B 602 (2001) 307 [hep-th/0005276] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP 05 (2004) 072 [hep-th/0404116] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    D. Marsh, L. McAllister and T. Wrase, The Wasteland of random supergravities, JHEP 03 (2012) 102 [arXiv:1112.3034] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    X. Chen, G. Shiu, Y. Sumitomo and S.H. Tye, A global view on the search for de-Sitter vacua in (type IIA) string theory, JHEP 04 (2012) 026 [arXiv:1112.3338] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    T.C. Bachlechner, D. Marsh, L. McAllister and T. Wrase, Supersymmetric vacua in random supergravity, arXiv:1207.2763 [INSPIRE].
  33. [33]
    Y. Sumitomo and S.-H.H. Tye, A stringy mechanism for a small cosmological constant, JCAP 08 (2012) 032 [arXiv:1204.5177] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    Y. Sumitomo and S.-H.H. Tye, A Stringy Mechanism for A Small Cosmological Constant, in The 3rd UTQuest workshop ExDiP 2012 Superstring Cosmophysics, Obihiro Japan (2012).Google Scholar
  35. [35]
    C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    A. Sen, Orientifold limit of F-theory vacua, Phys. Rev. D 55 (1997) 7345 [hep-th/9702165] [INSPIRE].ADSGoogle Scholar
  37. [37]
    M. Cicoli, C. Mayrhofer and R. Valandro, Moduli Stabilisation for Chiral Global Models, JHEP 02 (2012) 062 [arXiv:1110.3333] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    A. Westphal, de Sitter string vacua from Kähler uplifting, JHEP 03 (2007) 102 [hep-th/0611332] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    A. Collinucci, New F-theory lifts, JHEP 08 (2009) 076 [arXiv:0812.0175] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    A. Collinucci, New F-theory lifts. II. Permutation orientifolds and enhanced singularities, JHEP 04 (2010) 076 [arXiv:0906.0003] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    R. Blumenhagen, T.W. Grimm, B. Jurke and T. Weigand, F-theory uplifts and GUTs, JHEP 09 (2009) 053 [arXiv:0906.0013] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    L. Martucci, D-branes on general N = 1 backgrounds: superpotentials and D-terms, JHEP 06 (2006) 033 [hep-th/0602129] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    M. Bianchi, A. Collinucci and L. Martucci, Magnetized E3-brane instantons in F-theory, JHEP 12 (2011) 045 [arXiv:1107.3732] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    D. Lüst, P. Mayr, S. Reffert and S. Stieberger, F-theory flux, destabilization of orientifolds and soft terms on D7-branes, Nucl. Phys. B 732 (2006) 243 [hep-th/0501139] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A.P. Braun, A. Hebecker, C. Lüdeling and R. Valandro, Fixing D7 Brane Positions by F-theory Fluxes, Nucl. Phys. B 815 (2009) 256 [arXiv:0811.2416] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A.P. Braun, A. Collinucci and R. Valandro, G-flux in F-theory and algebraic cycles, Nucl. Phys. B 856 (2012) 129 [arXiv:1107.5337] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    R. Minasian and G.W. Moore, K theory and Ramond-Ramond charge, JHEP 11 (1997) 002 [hep-th/9710230] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    D.S. Freed and E. Witten, Anomalies in string theory with D-branes, Asian J. Math 3 (1999) 819 [hep-th/9907189] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  49. [49]
    A. Giryavets, S. Kachru, P.K. Tripathy and S.P. Trivedi, Flux compactifications on Calabi-Yau threefolds, JHEP 04 (2004) 003 [hep-th/0312104] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    M. Kreuzer and H. Skarke, Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys. 4 (2002) 1209 [hep-th/0002240] [INSPIRE].MathSciNetGoogle Scholar
  51. [51]
    S. Gukov, C. Vafa and E. Witten, CFTs from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477-478] [hep-th/9906070] [INSPIRE].
  52. [52]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    A. Collinucci, F. Denef and M. Esole, D-brane deconstructions in IIB orientifolds, JHEP 02 (2009) 005 [arXiv:0805.1573] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    M. Kreuzer and H. Skarke, PALP: a package for analyzing lattice polytopes with applications to toric geometry, Comput. Phys. Commun. 157 (2004) 87 [math/0204356] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  55. [55]
    A.P. Braun and N.-O. Walliser, A new offspring of PALP, arXiv:1106.4529 [INSPIRE].
  56. [56]
    A.P. Braun, J. Knapp, E. Scheidegger, H. Skarke and N.-O. Walliser, PALPa User Manual, arXiv:1205.4147 [INSPIRE].
  57. [57]
    J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, in Lecture Notes in Mathematics. Vol. 476: Modular Functions of One Variable IV, Springer, Heidelberg Germany (1975), pg. 33.Google Scholar
  58. [58]
    M. Bershadsky et al., Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    R. Donagi and M. Wijnholt, Higgs Bundles and UV Completion in F-theory, arXiv:0904.1218 [INSPIRE].
  60. [60]
    K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and alpha-prime corrections to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    S. Krause, C. Mayrhofer and T. Weigand, Gauge Fluxes in F-theory and Type IIB Orientifolds, JHEP 08 (2012) 119 [arXiv:1202.3138] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    J. Gray et al., Calabi-Yau Manifolds with Large Volume Vacua, arXiv:1207.5801 [INSPIRE].
  63. [63]
    R. Blumenhagen, S. Moster and E. Plauschinn, Moduli Stabilisation versus Chirality for MSSM like Type IIB Orientifolds, JHEP 01 (2008) 058 [arXiv:0711.3389] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    R. Blumenhagen, V. Braun, T.W. Grimm and T. Weigand, GUTs in Type IIB Orientifold Compactifications, Nucl. Phys. B 815 (2009) 1 [arXiv:0811.2936] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  65. [65]
    A. Collinucci, M. Kreuzer, C. Mayrhofer and N.-O. Walliser, Four-modulusSwiss Cheesechiral models, JHEP 07 (2009) 074 [arXiv:0811.4599] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  66. [66]
    E. Witten, D-branes and k-theory, JHEP 12 (1998) 019 [hep-th/9810188] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    G.W. Moore and E. Witten, Selfduality, Ramond-Ramond fields and k-theory, JHEP 05 (2000) 032 [hep-th/9912279] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    A.M. Uranga, D-brane probes, RR tadpole cancellation and k-theory charge, Nucl. Phys. B 598 (2001) 225 [hep-th/0011048] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    F. Denef, Les Houches Lectures on Constructing String Vacua, arXiv:0803.1194 [INSPIRE].
  70. [70]
    F. Denef, M.R. Douglas and B. Florea, Building a better racetrack, JHEP 06 (2004) 034 [hep-th/0404257] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    M. Kreuzer and H. Skarke, Classification of reflexive polyhedra in three-dimensions, Adv. Theor. Math. Phys. 2 (1998) 847 [hep-th/9805190] [INSPIRE].MathSciNetGoogle Scholar
  72. [72]
    R. Blumenhagen, B. Jurke, T. Rahn and H. Roschy, Cohomology of Line Bundles: A Computational Algorithm, J. Math. Phys. 51 (2010) 103525 [arXiv:1003.5217] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  73. [73]
    http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/, cohomCalg, High-performance line bundle cohomology computation based on [72] (2010).
  74. [74]
    S. Katz, On the finiteness of rational curves on quintic threefolds, Compos. Math. 60 (1986) 151.zbMATHGoogle Scholar
  75. [75]
    M. Dine, N. Seiberg and E. Witten, Fayet-Iliopoulos Terms in String Theory, Nucl. Phys. B 289 (1987) 589 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  76. [76]
    H. Jockers and J. Louis, D-terms and F-terms from D7-brane fluxes, Nucl. Phys. B 718 (2005) 203 [hep-th/0502059] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  77. [77]
    S.H. Katz and C. Vafa, Geometric engineering of N = 1 quantum field theories, Nucl. Phys. B 497 (1997) 196 [hep-th/9611090] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  78. [78]
    R. Kallosh, A.-K. Kashani-Poor and A. Tomasiello, Counting fermionic zero modes on M5 with fluxes, JHEP 06 (2005) 069 [hep-th/0503138] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  79. [79]
    T.W. Grimm and J. Louis, The effective action of N = 1 Calabi-Yau orientifolds, Nucl. Phys. B 699 (2004) 387 [hep-th/0403067] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  80. [80]
    B.R. Greene and M. Plesser, Duality in Calabi-Yau moduli space, Nucl. Phys. B 338 (1990) 15 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  81. [81]
    P. Candelas, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for two parameter models. 2., Nucl. Phys. B 429 (1994) 626 [hep-th/9403187] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  82. [82]
    D. Martinez Pedrera, D. Mehta, M. Rummel and A. Westphal, to appear.Google Scholar
  83. [83]
    D. Mehta, Y.-H. He and J.D. Hauenstein, Numerical Algebraic Geometry: A New Perspective on String and Gauge Theories, JHEP 07 (2012) 018 [arXiv:1203.4235] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  84. [84]
    C. Mayrhofer, Compactifications of Type IIB String Theory and F-Theory Models by Means of Toric Geometry, Ph.D. Thesis, Vienna University of Technology, Vienna Austria (2010).Google Scholar
  85. [85]
    A. Collinucci and R. Savelli, On flux quantization in F-theory, JHEP 02 (2012) 015 [arXiv:1011.6388] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  86. [86]
    A. Collinucci and R. Savelli, On flux quantization in f-theory II: unitary and symplectic gauge groups, JHEP 08 (2012) 094 [arXiv:1203.4542] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    R. Tatar and W. Walters, GUT theories from Calabi-Yau 4-folds with SO(10) Singularities, arXiv:1206.5090 [INSPIRE].
  88. [88]
    P. Candelas, E. Perevalov and G. Rajesh, Toric geometry and enhanced gauge symmetry of F-theory/heterotic vacua, Nucl. Phys. B 507 (1997) 445 [hep-th/9704097] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  89. [89]
    S. Krause, C. Mayrhofer and T. Weigand, G 4 flux, chiral matter and singularity resolution in F-theory compactifications, Nucl. Phys. B 858 (2012) 1 [arXiv:1109.3454] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  90. [90]
    P. Candelas and X.C. de la Ossa, Comments on conifolds, Nucl. Phys. B 342 (1990) 246 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  • Jan Louis
    • 1
    • 2
  • Markus Rummel
    • 1
    Email author
  • Roberto Valandro
    • 1
  • Alexander Westphal
    • 3
  1. 1.II. Institut für Theoretische Physik der Universität HamburgHamburgGermany
  2. 2.Zentrum für Mathematische PhysikUniversität HamburgHamburgGermany
  3. 3.Theory Group, Deutsches Elektronen-Synchrotron DESYHamburgGermany

Personalised recommendations