Journal of High Energy Physics

, 2012:155 | Cite as

MINLO: multi-scale improved NLO

Open Access
Article

Abstract

In the present work we consider the assignment of the factorization and renormalization scales in hadron collider processes with associated jet production, at next-to-leading order (NLO) in perturbation theory. We propose a simple, definite prescription to this end, including Sudakov form factors to consistently account for the distinct kinematic scales occuring in such collisions. The scheme yields results that are accurate at NLO and, for a large class of observables, it resums to all orders the large logarithms that arise from kinematic configurations involving disparate scales. In practical terms the method is most simply understood as an NLO extension of the matrix element reweighting procedure employed in tree level matrix element-parton shower merging algorithms. By way of a proof-of-concept, we apply the method to Higgs and Z boson production in association with up to two jets.

Keywords

QCD Phenomenology NLO Computations 

References

  1. [1]
    P.M. Stevenson, Optimized perturbation theory, Phys. Rev. D 23 (1981) 2916 [INSPIRE].ADSGoogle Scholar
  2. [2]
    S.J. Brodsky, G.P. Lepage and P.B. Mackenzie, On the elimination of scale ambiguities in perturbative quantum chromodynamics, Phys. Rev. D 28 (1983) 228 [INSPIRE].ADSGoogle Scholar
  3. [3]
    S.J. Brodsky and L. Di Giustino, Setting the renormalization scale in QCD: the principle of maximum conformality, arXiv:1107.0338 [INSPIRE].
  4. [4]
    S. Catani, F. Krauss, R. Kuhn and B. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M.L. Mangano, M. Moretti and R. Pittau, Multijet matrix elements and shower evolution in hadronic collisions: \( Wb\overline{b} \) + n jets as a case study, Nucl. Phys. B 632 (2002) 343 [hep-ph/0108069] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    L. Lönnblad, Correcting the color dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 08 (2002) 015 [hep-ph/0205283] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Mrenna and P. Richardson, Matching matrix elements and parton showers with HERWIG and PYTHIA, JHEP 05 (2004) 040 [hep-ph/0312274] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Mangano, Merging multijet matrix elements and shower evolution in hadronic collisions, http://mlm.web.cern.ch/mlm/talks/lund-alpgen.pdf (2004).
  10. [10]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].ADSGoogle Scholar
  14. [14]
    S. Catani, Y.L. Dokshitzer, M. Seymour and B. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Rubin, G.P. Salam and S. Sapeta, Giant QCD K-factors beyond NLO, JHEP 09 (2010) 084 [arXiv:1006.2144] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    D. de Florian, M. Grazzini and Z. Kunszt, Higgs production with large transverse momentum in hadronic collisions at next-to-leading order, Phys. Rev. Lett. 82 (1999) 5209 [hep-ph/9902483] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    V. Ravindran, J. Smith and W. Van Neerven, Next-to-leading order QCD corrections to differential distributions of Higgs boson production in hadron hadron collisions, Nucl. Phys. B 634 (2002) 247 [hep-ph/0201114] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J.M. Campbell, R.K. Ellis and G. Zanderighi, Next-to-leading order Higgs + 2 jet production via gluon fusion, JHEP 10 (2006) 028 [hep-ph/0608194] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J.M. Campbell, R.K. Ellis and C. Williams, Hadronic production of a Higgs boson and two jets at next-to-leading order, Phys. Rev. D 81 (2010) 074023 [arXiv:1001.4495] [INSPIRE].ADSGoogle Scholar
  21. [21]
    J.M. Campbell et al., NLO Higgs boson production plus one and two jets using the POWHEG BOX, MadGraph4 and MCFM, JHEP 07 (2012) 092 [arXiv:1202.5475] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Alioli, P. Nason, C. Oleari and E. Re, Vector boson plus one jet production in POWHEG, JHEP 01 (2011) 095 [arXiv:1009.5594] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    E. Re, NLO corrections merged with parton showers for Z + 2 jets production using the POWHEG method, JHEP 10 (2012) 031 [arXiv:1204.5433] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    W. Giele, E.N. Glover and D.A. Kosower, Higher order corrections to jet cross-sections in hadron colliders, Nucl. Phys. B 403 (1993) 633 [hep-ph/9302225] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Z. Bern, L.J. Dixon and D.A. Kosower, One loop amplitudes for e + e to four partons, Nucl. Phys. B 513 (1998) 3 [hep-ph/9708239] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W + 2 jet and Z + 2 jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    C. Berger et al., Precise predictions for W + 4 jet production at the Large Hadron Collider, Phys. Rev. Lett. 106 (2011) 092001 [arXiv:1009.2338] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G.P. Salam, private communication.Google Scholar
  33. [33]
    S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084 [INSPIRE].
  34. [34]
    G. Bozzi, S. Catani, G. Ferrera, D. de Florian and M. Grazzini, Transverse-momentum resummation: A Perturbative study of Z production at the Tevatron, Nucl. Phys. B 815 (2009) 174 [arXiv:0812.2862] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  • Keith Hamilton
    • 1
  • Paolo Nason
    • 1
    • 2
  • Giulia Zanderighi
    • 3
  1. 1.Theory Division, CERNGeneva 23Switzerland
  2. 2.INFN — sezione di Milano BicoccaMilanItaly
  3. 3.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordUK

Personalised recommendations