Advertisement

Journal of High Energy Physics

, 2012:148 | Cite as

Similar dark matter and baryon abundances with TeV-scale leptogenesis

  • Sacha DavidsonEmail author
  • Martin Elmer
Open Access
Article

Abstract

We estimate the Baryon Asymmetry of the Universe (BAU) produced in an inverse seesaw model containing extra light singlets, and with lepton number conservation prior to the electroweak phase transition. A CP asymmetry ϵ ~ \( \mathcal{O}(1) \) is required to obtain a large enough BAU. We discuss the relation between the baryon and WIMP relic densities in baryogenesis scenarios using the out-of-equilibrium decay of a baryon-parent of mass M: when baryon number violation freezes out, the remaining density of baryon-parents is ~ M/m W × the WIMP relic density. So the baryon/WIMP ratio is ~ ϵM/m W . A natural explanation of the similar WIMP and baryon densities could be that CP violation is of order the ratio m W /M.

Keywords

Cosmology of Theories beyond the SM Neutrino Physics 

References

  1. [1]
    A.D. Sakharov, Violation of CP invariance, C asymmetry, and barion asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32.Google Scholar
  2. [2]
    A.D. Dolgov, NonGUT baryogenesis, Phys. Rept. 222 (1992) 309 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    V. Rubakov and M. Shaposhnikov, Electroweak baryon number nonconservation in the early universe and in high-energy collisions, Usp. Fiz. Nauk 166 (1996) 493 [Phys. Usp. 39 (1996) 461] [hep-ph/9603208] [INSPIRE].
  4. [4]
    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    P. Hut and K.A. Olive, A cosmological upper limit on the mass of heavy neutrinos, Phys. Lett. B 87 (1979) 144 [INSPIRE].ADSGoogle Scholar
  8. [8]
    K. Griest and D. Seckel, Cosmic asymmetry, neutrinos and the Sun, Nucl. Phys. B 283 (1987) 681 [Erratum ibid. B 296 (1988) 1034] [INSPIRE].
  9. [9]
    S. Nussinov, Technocosmology: could a technibaryon excess provide anaturalmissing mass candidate?, Phys. Lett. B 165 (1985) 55 [INSPIRE].ADSGoogle Scholar
  10. [10]
    D. Hooper, J. March-Russell and S.M. West, Asymmetric sneutrino dark matter and the Ωb /ΩDM puzzle, Phys. Lett. B 605 (2005) 228 [hep-ph/0410114] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M.L. Graesser, I.M. Shoemaker and L. Vecchi, Asymmetric WIMP dark matter, JHEP 10 (2011) 110 [arXiv:1103.2771] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S.B. Gudnason, C. Kouvaris and F. Sannino, Dark matter from new technicolor theories, Phys. Rev. D 74 (2006) 095008 [hep-ph/0608055] [INSPIRE].ADSGoogle Scholar
  13. [13]
    D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric dark matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].ADSGoogle Scholar
  14. [14]
    A. Belyaev, M.T. Frandsen, S. Sarkar and F. Sannino, Mixed dark matter from technicolor, Phys. Rev. D 83 (2011) 015007 [arXiv:1007.4839] [INSPIRE].ADSGoogle Scholar
  15. [15]
    J. March-Russell and M. McCullough, Asymmetric dark matter via spontaneous co-genesis, JCAP 03 (2012) 019 [arXiv:1106.4319] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    K. Kamada and M. Yamaguchi, Asymmetric dark matter from spontaneous cogenesis in the supersymmetric standard model, Phys. Rev. D 85 (2012) 103530 [arXiv:1201.2636] [INSPIRE].ADSGoogle Scholar
  17. [17]
    E.J. Chun, Minimal dark matter and leptogenesis, JHEP 03 (2011) 098 [arXiv:1102.3455] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    Z. Kang, J. Li, T. Li, T. Liu and J. Yang, Asymmetric sneutrino dark matter in the NMSSM with minimal inverse seesaw, arXiv:1102.5644 [INSPIRE].
  19. [19]
    A. Falkowski, J.T. Ruderman and T. Volansky, Asymmetric dark matter from leptogenesis, JHEP 05 (2011) 106 [arXiv:1101.4936] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    Y. Cui, L. Randall and B. Shuve, A WIMPy baryogenesis miracle, JHEP 04 (2012) 075 [arXiv:1112.2704] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. McDonald, Simultaneous generation of WIMP miracle-like densities of baryons and dark matter, Phys. Rev. D 84 (2011) 103514 [arXiv:1108.4653] [INSPIRE].ADSGoogle Scholar
  22. [22]
    J. McDonald, Baryomorphosis: relating the baryon asymmetry to theWIMP miracle’, Phys. Rev. D 83 (2011) 083509 [arXiv:1009.3227] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J. McDonald, Right-handed sneutrino condensate cold dark matter and the baryon-to-dark matter ratio, JCAP 01 (2007) 001 [hep-ph/0609126] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Gonzalez-Garcia and J. Valle, Fast decaying neutrinos and observable flavor violation in a new class of majoron models, Phys. Lett. B 216 (1989) 360 [INSPIRE].ADSGoogle Scholar
  25. [25]
    T. Mueller et al., Improved predictions of reactor antineutrino spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].ADSGoogle Scholar
  26. [26]
    G. Mention et al., The reactor antineutrino anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].ADSGoogle Scholar
  27. [27]
    P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617 [Erratum ibid. C 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].
  28. [28]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSGoogle Scholar
  29. [29]
    L. Covi and E. Roulet, Baryogenesis from mixed particle decays, Phys. Lett. B 399 (1997) 113 [hep-ph/9611425] [INSPIRE].ADSGoogle Scholar
  30. [30]
    A. Pilaftsis, Heavy Majorana neutrinos and baryogenesis, Int. J. Mod. Phys. A 14 (1999) 1811 [hep-ph/9812256] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A. Pilaftsis and T.E. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J. Hamann, S. Hannestad, G.G. Raffelt and Y.Y. Wong, Sterile neutrinos with eV masses in cosmology: how disfavoured exactly?, JCAP 09 (2011) 034 [arXiv:1108.4136] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    F. Iocco, G. Mangano, G. Miele, O. Pisanti and P.D. Serpico, Primordial nucleosynthesis: from precision cosmology to fundamental physics, Phys. Rept. 472 (2009) 1 [arXiv:0809.0631] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Mirizzi, N. Saviano, G. Miele and P.D. Serpico, Light sterile neutrino production in the early universe with dynamical neutrino asymmetries, Phys. Rev. D 86 (2012) 053009 [arXiv:1206.1046] [INSPIRE].ADSGoogle Scholar
  36. [36]
    N. Okada and O. Seto, Originally asymmetric dark matter, Phys. Rev. D 86 (2012) 063525 [arXiv:1205.2844] [INSPIRE].ADSGoogle Scholar
  37. [37]
    G.R. Farrar and G. Zaharijas, Dark matter and the baryon asymmetry, Phys. Rev. Lett. 96 (2006) 041302 [hep-ph/0510079] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M.T. Frandsen and S. Sarkar, Light asymmetric dark matter, DESY-PROC-2010-03 (2010).Google Scholar
  39. [39]
    M.T. Frandsen, Asymmetric DM and DM connection to baryogenesis, talk given at the Dark matter underground and in the heavens (DMUH11), July 188-29, CERN, Switzerland (2011).Google Scholar
  40. [40]
    H. Guo and P. Hung, Shadow fermions, messenger scalars and leptogenesis, Nucl. Phys. B 814 (2009) 76 [arXiv:0810.3341] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    C. Arina, J.-O. Gong and N. Sahu, Unifying darko-lepto-genesis with scalar triplet inflation, Nucl. Phys. B 865 (2012) 430 [arXiv:1206.0009] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    V. Kuzmin, V. Rubakov and M. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].ADSGoogle Scholar
  43. [43]
    M. Claudson, L.J. Hall and I. Hinchliffe, Cosmological baryon generation at low temperatures, Nucl. Phys. B 241 (1984) 309 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    T. Hambye, Leptogenesis at the TeV scale, Nucl. Phys. B 633 (2002) 171 [hep-ph/0111089] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S.K. Kang and C. Kim, Extended double seesaw model for neutrino mass spectrum and low scale leptogenesis, Phys. Lett. B 646 (2007) 248 [hep-ph/0607072] [INSPIRE].ADSGoogle Scholar
  46. [46]
    M. Hirsch, J. Valle, M. Malinsky, J. Romao and U. Sarkar, Thermal leptogenesis in extended supersymmetric seesaw, Phys. Rev. D 75 (2007) 011701 [hep-ph/0608006] [INSPIRE].ADSGoogle Scholar
  47. [47]
    E.J. Chun, TeV leptogenesis in Z-prime models and its collider probe, Phys. Rev. D 72 (2005) 095010 [hep-ph/0508050] [INSPIRE].ADSGoogle Scholar
  48. [48]
    M. Gonzalez-Garcia, J. Racker and N. Rius, Leptogenesis without violation of B-L, JHEP 11 (2009) 079 [arXiv:0909.3518] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S. Blanchet, T. Hambye and F.-X. Josse-Michaux, Reconciling leptogenesis with observable μeγ rates,JHEP 04 (2010) 023 [arXiv:0912.3153] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    F.-X. Josse-Michaux and E. Molinaro, A common framework for dark matter, leptogenesis and neutrino masses, Phys. Rev. D 84 (2011) 125021 [arXiv:1108.0482] [INSPIRE].ADSGoogle Scholar
  51. [51]
    J. Garayoa, M. Gonzalez-Garcia and N. Rius, Soft leptogenesis in the inverse seesaw model, JHEP 02 (2007) 021 [hep-ph/0611311] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Blanchet, P.B. Dev and R. Mohapatra, Leptogenesis with TeV scale inverse seesaw in SO(10), Phys. Rev. D 82 (2010) 115025 [arXiv:1010.1471] [INSPIRE].ADSGoogle Scholar
  53. [53]
    H. Zhang, Light sterile neutrino in the minimal extended seesaw, Phys. Lett. B 714 (2012) 262 [arXiv:1110.6838] [INSPIRE].ADSGoogle Scholar
  54. [54]
    S. Dodelson and L.M. Widrow, Baryogenesis in a baryon symmetric universe, Phys. Rev. D 42 (1990) 326 [INSPIRE].ADSGoogle Scholar
  55. [55]
    F. del Aguila and J. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    A. Akeroyd, C.-W. Chiang and N. Gaur, Leptonic signatures of doubly charged Higgs boson production at the LHC, JHEP 11 (2010) 005 [arXiv:1009.2780] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A. Das and N. Okada, Inverse seesaw neutrino signatures at LHC and ILC, arXiv:1207.3734 [INSPIRE].
  58. [58]
    M. Malinsky, T. Ohlsson, Z.-z. Xing and H. Zhang, Non-unitary neutrino mixing and CP-violation in the minimal inverse seesaw model, Phys. Lett. B 679 (2009) 242 [arXiv:0905.2889] [INSPIRE].ADSGoogle Scholar
  59. [59]
    F. Deppisch, T. Kosmas and J. Valle, Enhanced μ -e conversion in nuclei in the inverse seesaw model, Nucl. Phys. B 752 (2006) 80 [hep-ph/0512360] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    W. Abdallah, A. Awad, S. Khalil and H. Okada, Muon anomalous magnetic moment and μeγ in B-L model with inverse seesaw, Eur. Phys. J. C 72 (2012) 2108 [arXiv:1105.1047] [INSPIRE].ADSGoogle Scholar
  61. [61]
    P.B. Dev and R. Mohapatra, TeV scale inverse seesaw in SO(10) and leptonic non-unitarity effects, Phys. Rev. D 81 (2010) 013001 [arXiv:0910.3924] [INSPIRE].ADSGoogle Scholar
  62. [62]
    M. Hirsch, T. Kernreiter, J. Romao and A. Villanova del Moral, Minimal supersymmetric inverse seesaw: neutrino masses, lepton flavour violation and LHC phenomenology, JHEP 01 (2010) 103 [arXiv:0910.2435] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    A. Abada, C. Biggio, F. Bonnet, M. Gavela and T. Hambye, Low energy effects of neutrino masses, JHEP 12 (2007) 061 [arXiv:0707.4058] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].ADSGoogle Scholar
  65. [65]
    D. Schmidt, T. Schwetz and T. Toma, Direct detection of leptophilic dark matter in a model with radiative neutrino masses, Phys. Rev. D 85 (2012) 073009 [arXiv:1201.0906] [INSPIRE].ADSGoogle Scholar
  66. [66]
    R. Bouchand and A. Merle, Running of radiative neutrino masses: the scotogenic model, JHEP 07 (2012) 084 [arXiv:1205.0008] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    E. Ma, A. Natale and A. Rashed, Scotogenic A 4 neutrino model for nonzero θ 13 and large δ CP, Int. J. Mod. Phys. A 27 (2012) 1250134 [arXiv:1206.1570] [INSPIRE].ADSGoogle Scholar
  68. [68]
    C. Arina, F. Bazzocchi, N. Fornengo, J. Romao and J. Valle, Minimal supergravity sneutrino dark matter and inverse seesaw neutrino masses, Phys. Rev. Lett. 101 (2008) 161802 [arXiv:0806.3225] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    H. An, P.B. Dev, Y. Cai and R. Mohapatra, Sneutrino dark matter in gauged inverse seesaw models for neutrinos, Phys. Rev. Lett. 108 (2012) 081806 [arXiv:1110.1366] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J.E. Kim, Light pseudoscalars, particle physics and cosmology, Phys. Rept. 150 (1987) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].ADSGoogle Scholar
  72. [72]
    S.Y. Khlebnikov and M. Shaposhnikov, The statistical theory of anomalous fermion number nonconservation, Nucl. Phys. B 308 (1988) 885 [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    J.A. Harvey and M.S. Turner, Cosmological baryon and lepton number in the presence of electroweak fermion number violation, Phys. Rev. D 42 (1990) 3344 [INSPIRE].ADSGoogle Scholar
  74. [74]
    Y. Burnier, M. Laine and M. Shaposhnikov, Baryon and lepton number violation rates across the electroweak crossover, JCAP 02 (2006) 007 [hep-ph/0511246] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    M. D’Onofrio, K. Rummukainen and A. Tranberg, The sphaleron rate through the electroweak cross-over, JHEP 08 (2012) 123 [arXiv:1207.0685] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    S. Shapiro, S. Teukolsky and I. Wasserman, Do neutrino rest masses affect cosmological helium production?, Phys. Rev. Lett. 45 (1980) 669 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  1. 1.IPNL, Université de Lyon, Université Lyon 1, CNRS/IN2P3Villeurbanne cedexFrance

Personalised recommendations