Advertisement

Journal of High Energy Physics

, 2012:140 | Cite as

Higgs boson mass and new physics

  • Fedor BezrukovEmail author
  • Mikhail Yu. Kalmykov
  • Bernd A. Kniehl
  • Mikhail Shaposhnikov
Article

Abstract

We discuss the lower Higgs boson mass bounds which come from the absolute stability of the Standard Model (SM) vacuum and from the Higgs inflation, as well as the prediction of the Higgs boson mass coming from the asymptotic safety of the SM. We account for the three-loop renormalization group evolution of the couplings of the SM and for a part of the two-loop corrections that involve the QCD coupling α s to the initial conditions for their running. This is one step beyond the current state-of-the-art procedure (“one-loop matching-two-loop running”). This results in a reduction of the theoretical uncertainties in the Higgs boson mass bounds and predictions, associated with the SM physics, to 1–2 GeV. We find that with the account of existing experimental uncertainties in the mass of the top quark and α s (taken at the 2σ level) the bound reads M H  ≥ M min (equality corresponds to the asymptotic-safety prediction), where \( {{M}_{{\min }}}=\left( {129\pm 6} \right) \) GeV. We argue that the discovery of the SM Higgs boson in this range would be in agreement with the hypothesis of the absence of new energy scales between the Fermi and Planck scales, whereas the coincidence of M H with M min would suggest that the electroweak scale is determined by Planck physics. In order to clarify the relation between the Fermi and Planck scales a construction of an electron-positron or muon collider with a center-of-mass energy ~ (200 + 200 GeV) (Higgs and t-quark factory) would be needed.

Keywords

Standard Model Higgs Physics Renormalization Group 

References

  1. [1]
    L. Maiani, G. Parisi and R. Petronzio, Bounds on the Number and Masses of Quarks and Leptons, Nucl. Phys. B 136 (1978) 115 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Bounds on the Fermions and Higgs Boson Masses in Grand Unified Theories, Nucl. Phys. B 158 (1979) 295 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Lindner, Implications of Triviality for the Standard Model, Zeit. Phys. C31 (1986) 295.ADSGoogle Scholar
  4. [4]
    N. Krasnikov, Restriction of the Fermion Mass in Gauge Theories of Weak and Electromagnetic Interactions, Yad. Fiz. 28 (1978) 549 [INSPIRE].Google Scholar
  5. [5]
    P.Q. Hung, Vacuum Instability and New Constraints on Fermion Masses, Phys. Rev. Lett. 42 (1979) 873 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    H.D. Politzer and S. Wolfram, Bounds on Particle Masses in the Weinberg-Salam Model, Phys. Lett. B 82 (1979) 242 [Erratum ibid. 83B (1979) 421] [INSPIRE].ADSGoogle Scholar
  7. [7]
    T. Hambye and K. Riesselmann, Matching conditions and Higgs mass upper bounds revisited, Phys. Rev. D 55 (1997) 7255 [hep-ph/9610272] [INSPIRE].ADSGoogle Scholar
  8. [8]
    CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].ADSGoogle Scholar
  9. [9]
    ATLAS collaboration, G. Aad et al., Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].ADSGoogle Scholar
  10. [10]
    J. Espinosa, G. Giudice and A. Riotto, Cosmological implications of the Higgs mass measurement, JCAP 05 (2008) 002 [arXiv:0710.2484] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    F. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].ADSGoogle Scholar
  12. [12]
    F. Bezrukov and M. Shaposhnikov, Standard Model Higgs boson mass from inflation: Two loop analysis, JHEP 07 (2009) 089 [arXiv:0904.1537] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].ADSGoogle Scholar
  14. [14]
    G. Altarelli and G. Isidori, Lower limit on the Higgs mass in the standard model: An Update, Phys. Lett. B 337 (1994) 141 [INSPIRE].ADSGoogle Scholar
  15. [15]
    J. Casas, J. Espinosa and M. Quirós, Improved Higgs mass stability bound in the standard model and implications for supersymmetry, Phys. Lett. B 342 (1995) 171 [hep-ph/9409458] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J. Casas, J. Espinosa and M. Quirós, Standard model stability bounds for new physics within LHC reach, Phys. Lett. B 382 (1996) 374 [hep-ph/9603227] [INSPIRE].ADSGoogle Scholar
  17. [17]
    M. Holthausen, K.S. Lim and M. Lindner, Planck scale Boundary Conditions and the Higgs Mass, JHEP 02 (2012) 037 [arXiv:1112.2415] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Elias-Miro et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].ADSGoogle Scholar
  19. [19]
    L.N. Mihaila, J. Salomon and M. Steinhauser, Gauge Coupling β-functions in the Standard Model to Three Loops, Phys. Rev. Lett. 108 (2012) 151602 [arXiv:1201.5868] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    K. Chetyrkin and M. Zoller, Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the Standard Model, JHEP 06 (2012) 033 [arXiv:1205.2892] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    F.L. Bezrukov, A. Magnin and M. Shaposhnikov, Standard Model Higgs boson mass from inflation, Phys. Lett. B 675 (2009) 88 [arXiv:0812.4950] [INSPIRE].ADSGoogle Scholar
  22. [22]
    S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  23. [23]
    J. Ellis, J. Espinosa, G. Giudice, A. Hoecker and A. Riotto, The Probable Fate of the Standard Model, Phys. Lett. B 679 (2009) 369 [arXiv:0906.0954] [INSPIRE].ADSGoogle Scholar
  24. [24]
    K. Chetyrkin and M. Steinhauser, Short distance mass of a heavy quark at order \( \alpha_s^3 \), Phys. Rev. Lett. 83 (1999) 4001 [hep-ph/9907509] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    K. Chetyrkin and M. Steinhauser, The Relation between the \( \overline{\mathrm{MS}} \) and the on-shell quark mass at order \( \alpha_s^3 \), Nucl. Phys. B 573 (2000) 617 [hep-ph/9911434] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    K. Melnikov and T.v. Ritbergen, The Three loop relation between the \( \overline{\mathrm{MS}} \) and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A. Kataev and V. Kim, Uncertainties of QCD predictions for Higgs boson decay into bottom quarks at NNLO and beyond, PoS(ACAT08)004 [arXiv:0902.1442] [INSPIRE].
  28. [28]
    A. Kataev and V. Kim, Peculiar features of the relations between pole and running heavy quark masses and estimates of the \( O(\alpha_s^4) \) contributions, Phys. Part. Nucl. 41 (2010) 946 [arXiv:1001.4207] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    M.C. Smith and S.S. Willenbrock, Top quark pole mass, Phys. Rev. Lett. 79 (1997) 3825 [hep-ph/9612329] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A.H. Hoang, A. Jain, I. Scimemi and I.W. Stewart, Infrared Renormalization Group Flow for Heavy Quark Masses, Phys. Rev. Lett. 101 (2008) 151602 [arXiv:0803.4214] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A.H. Hoang, A. Jain, I. Scimemi and I.W. Stewart, R-evolution: Improving perturbative QCD, Phys. Rev. D 82 (2010) 011501 [arXiv:0908.3189] [INSPIRE].ADSGoogle Scholar
  32. [32]
    R. Hempfling and B.A. Kniehl, On the relation between the fermion pole mass and MS Yukawa coupling in the standard model, Phys. Rev. D 51 (1995) 1386 [hep-ph/9408313] [INSPIRE].ADSGoogle Scholar
  33. [33]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  34. [34]
    S. Alekhin, J. Blumlein and S. Moch, Parton Distribution Functions and Benchmark Cross sections at NNLO, Phys. Rev. D 86 (2012) 054009 [arXiv:1202.2281] [INSPIRE].ADSGoogle Scholar
  35. [35]
    G. Watt, Parton distribution function dependence of benchmark Standard Model total cross sections at the 7 TeV LHC, JHEP 09 (2011) 069 [arXiv:1106.5788] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    G. Watt, MSTW PDFs and impact of PDFs on cross sections at Tevatron and LHC, Nucl. Phys. Proc. Suppl. 222224 (2012) 61 [arXiv:1201.1295] [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    U. Langenfeld, S. Moch and P. Uwer, Measuring the running top-quark mass, Phys. Rev. D 80 (2009) 054009 [arXiv:0906.5273] [INSPIRE].ADSGoogle Scholar
  38. [38]
    Tevatron Electroweak Working Group, CDF and D0 collaborations, Combination of CDF and D0 results on the mass of the top quark using up to 5.8 fb −1 of data, arXiv:1107.5255 [INSPIRE].
  39. [39]
    D0 collaboration, V.M. Abazov et al., Determination of the pole and \( \overline{\mathrm{MS}} \) masses of the top quark from the tt cross section, Phys. Lett. B 703 (2011) 422 [arXiv:1104.2887] [INSPIRE].ADSGoogle Scholar
  40. [40]
    D. Bennett and H.B. Nielsen, Predictions for nonAbelian fine structure constants from multicriticality, Int. J. Mod. Phys. A 9 (1994) 5155 [hep-ph/9311321] [INSPIRE].ADSGoogle Scholar
  41. [41]
    C. Froggatt and H.B. Nielsen, Standard model criticality prediction: Top mass 173 ± 5 GeV and Higgs mass 135 ± 9 GeV, Phys. Lett. B 368 (1996) 96 [hep-ph/9511371] [INSPIRE].ADSGoogle Scholar
  42. [42]
    G. Isidori, V.S. Rychkov, A. Strumia and N. Tetradis, Gravitational corrections to standard model vacuum decay, Phys. Rev. D 77 (2008) 025034 [arXiv:0712.0242] [INSPIRE].ADSGoogle Scholar
  43. [43]
    I. Masina and A. Notari, The Higgs mass range from Standard Model false vacuum Inflation in scalar-tensor gravity, Phys. Rev. D 85 (2012) 123506 [arXiv:1112.2659] [INSPIRE].ADSGoogle Scholar
  44. [44]
    I. Masina and A. Notari, Standard Model False Vacuum Inflation: Correlating the Tensor-to-Scalar Ratio to the Top Quark and Higgs Boson masses, Phys. Rev. Lett. 108 (2012) 191302 [arXiv:1112.5430] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    I. Masina and A. Notari, Inflation from the Higgs field false vacuum with hybrid potential, arXiv:1204.4155 [INSPIRE].
  46. [46]
    S. Weinberg, Ultraviolet divergences in quantum theories of gravity, in General Relativity: An Einstein centenary survey, S.W. Hawking and W.Israel eds., Cambridge University Press, Cambridge, U.K. (1979), pg. 790.Google Scholar
  47. [47]
    M. Niedermaier and M. Reuter, The Asymptotic Safety Scenario in Quantum Gravity, Living Rev. Rel. 9 (2006) 5.Google Scholar
  48. [48]
    M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev. D 57 (1998) 971 [hep-th/9605030] [INSPIRE].MathSciNetADSGoogle Scholar
  49. [49]
    R. Percacci and D. Perini, Asymptotic safety of gravity coupled to matter, Phys. Rev. D 68 (2003) 044018 [hep-th/0304222] [INSPIRE].ADSGoogle Scholar
  50. [50]
    G. Narain and R. Percacci, Renormalization Group Flow in Scalar-Tensor Theories. I, Class. Quant. Grav. 27 (2010) 075001 [arXiv:0911.0386] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].ADSGoogle Scholar
  52. [52]
    D. Gorbunov and A. Panin, Scalaron the mighty: producing dark matter and baryon asymmetry at reheating, Phys. Lett. B 700 (2011) 157 [arXiv:1009.2448] [INSPIRE].ADSGoogle Scholar
  53. [53]
    F. Bezrukov and D. Gorbunov, Distinguishing between R 2 -inflation and Higgs-inflation, Phys. Lett. B 713 (2012) 365 [arXiv:1111.4397] [INSPIRE].ADSGoogle Scholar
  54. [54]
    F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, Higgs inflation: consistency and generalisations, JHEP 01 (2011) 016 [arXiv:1008.5157] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    A. Barvinsky, A.Y. Kamenshchik, C. Kiefer, A. Starobinsky and C. Steinwachs, Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field, JCAP 12 (2009) 003 [arXiv:0904.1698] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    C. Burgess, H.M. Lee and M. Trott, Power-counting and the Validity of the Classical Approximation During Inflation, JHEP 09 (2009) 103 [arXiv:0902.4465] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    J. Barbon and J. Espinosa, On the Naturalness of Higgs Inflation, Phys. Rev. D 79 (2009) 081302 [arXiv:0903.0355] [INSPIRE].ADSGoogle Scholar
  58. [58]
    C. Burgess, H.M. Lee and M. Trott, Comment on Higgs Inflation and Naturalness, JHEP 07 (2010) 007 [arXiv:1002.2730] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M.P. Hertzberg, On Inflation with Non-minimal Coupling, JHEP 11 (2010) 023 [arXiv:1002.2995] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    M. Shaposhnikov, Is there a new physics between electroweak and Planck scales?, arXiv:0708.3550 [INSPIRE].
  61. [61]
    A. Boyarsky, O. Ruchayskiy and M. Shaposhnikov, The Role of sterile neutrinos in cosmology and astrophysics, Ann. Rev. Nucl. Part. Sci. 59 (2009) 191 [arXiv:0901.0011] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M. Shaposhnikov and D. Zenhausern, Scale invariance, unimodular gravity and dark energy, Phys. Lett. B 671 (2009) 187 [arXiv:0809.3395] [INSPIRE].MathSciNetADSGoogle Scholar
  63. [63]
    M. Shaposhnikov and D. Zenhausern, Quantum scale invariance, cosmological constant and hierarchy problem, Phys. Lett. B 671 (2009) 162 [arXiv:0809.3406] [INSPIRE].MathSciNetADSGoogle Scholar
  64. [64]
    D. Gorbunov and M. Shaposhnikov, How to find neutral leptons of the νMSM?, JHEP 10 (2007) 015 [arXiv:0705.1729] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    F. Jegerlehner and M. Kalmykov, O(αα s) relation between pole- and \( \overline{\mathrm{MS}} \) mass of the t quark, Acta Phys. Polon. B 34 (2003) 5335 [hep-ph/0310361] [INSPIRE].ADSGoogle Scholar
  66. [66]
    ATLAS collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  67. [67]
    CMS collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  68. [68]
    T. Muller, New results from the top quark, in ICHEP 2012 Conference, Melbourne (2012) [http://indico.cern.ch/getFile.py/access?contribId=7&sessionId=17&resId=1&materialId=slides&confId=181298].
  69. [69]
    ECFA/DESY LC Physics Working Group collaboration, E. Accomando et al., Physics with e + e linear colliders, Phys. Rept. 299 (1998) 1 [hep-ph/9705442] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    ECFA/DESY LC Physics Working Group collaboration, J. Aguilar-Saavedra et al., TESLA: The Superconducting electron positron linear collider with an integrated x-ray laser laboratory. Technical design report. Part 3. Physics at an e + e linear collider, hep-ph/0106315 [INSPIRE].
  71. [71]
    American Linear Collider Working Group collaboration, T. Abe et al., Linear Collider Physics Resource Book for Snowmass 2001 - Part 1: Introduction, hep-ex/0106055.
  72. [72]
    American Linear Collider Working Group collaboration, T. Abe et al., Linear Collider Physics Resource Book for Snowmass 2001 - Part 2: Higgs and Supersymmetry Studies, hep-ex/0106056 [INSPIRE].
  73. [73]
    T. Abe, Linear Collider Physics Resource Book for Snowmass 2001 - Part 3: Studies of Exotic and Standard Model Physics, hep-ex/0106057.
  74. [74]
    American Linear Collider Working Group collaboration, T. Abe et al., Linear Collider Physics Resource Book for Snowmass 2001 - Part 4: Theoretical, Accelerator and Experimental Options, hep-ex/0106058.
  75. [75]
    ACFA Linear Collider Working Group collaboration, K. Abe et al., Particle physics experiments at JLC, hep-ph/0109166 [INSPIRE].
  76. [76]
    ILC collaboration, G. Aarons et al., International Linear Collider Reference Design Report Volume 2: Physics at the ILC, arXiv:0709.1893 [INSPIRE].
  77. [77]
    M. Winter, Determination of the Strong Coupling Constant at Giga-Z, ILC note PHSM-2001-016.Google Scholar
  78. [78]
    ATLAS and CMS collaborations, S. Blyweert, Top-quark mass measurements at the LHC, arXiv:1205.2175 [INSPIRE].
  79. [79]
    C. Schwanenberger, Measurements of the inclusive cross section and of differential distributions in top quark pair production (D0), in ICHEP 2012 Conference, Melbourne (2012), [https://indico.cern.ch/getFile.py/access?contribId=534&sessionId=67&resId=0&materialId=slides&confId=181298].
  80. [80]
    A. Sirlin, Radiative Corrections in the SU(2)L × U(1) Theory: A Simple Renormalization Framework, Phys. Rev. D 22 (1980) 971 [INSPIRE].ADSGoogle Scholar
  81. [81]
    W. Marciano and A. Sirlin, Radiative Corrections to Neutrino Induced Neutral Current Phenomena in the SU(2)L × U(1) Theory, Phys. Rev. D 22 (1980) 2695 [Erratum ibid. D 31 (1985) 213] [INSPIRE].ADSGoogle Scholar
  82. [82]
    G. Burgers and F. Jegerlehner, Δr or the relation between the electroweak couplings and the weak vector boson masses, Conf.Proc. C8902201 (1989) 55.Google Scholar
  83. [83]
    S. Actis and G. Passarino, Two-Loop Renormalization in the Standard Model Part III: Renormalization Equations and their Solutions, Nucl. Phys. B 777 (2007) 100 [hep-ph/0612124] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  84. [84]
    A. Sirlin and R. Zucchini, Dependence of the quartic coupling \( {{\bar{h}}_{\overline{MS}}}(M) \) on m H and the possible onset of new physics in the higgs sector of the standard model, Nucl. Phys. B 266 (1986) 389 [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    T. Chang, K. Gaemers and W. van Neerven, QCD Corrections to the Mass and Width of the Intermediate Vector Bosons, Nucl. Phys. B 202 (1982) 407 [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    A. Djouadi, O(αα s) Vacuum Polarization Functions of the Standard Model Gauge Bosons, Nuovo Cim. A 100 (1988) 357 [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    B.A. Kniehl, Two Loop Corrections to the Vacuum Polarizations in Perturbative QCD, Nucl. Phys. B 347 (1990) 86 [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    A. Djouadi and P. Gambino, QCD corrections to Higgs boson selfenergies and fermionic decay widths, Phys. Rev. D 51 (1995) 218 [Erratum ibid. D 53 (1996) 4111] [hep-ph/9406431] [INSPIRE].ADSGoogle Scholar
  89. [89]
    F. Jegerlehner and M.Y. Kalmykov, O(αα s) correction to the pole mass of the t quark within the standard model, Nucl. Phys. B 676 (2004) 365 [hep-ph/0308216] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    F. Jegerlehner, M.Y. Kalmykov and O. Veretin, MS versus pole masses of gauge bosons: Electroweak bosonic two loop corrections, Nucl. Phys. B 641 (2002) 285 [hep-ph/0105304] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    F. Jegerlehner, M.Y. Kalmykov and O. Veretin, Full two loop electroweak corrections to the pole masses of gauge bosons, Nucl. Phys. Proc. Suppl. 116 (2003) 382 [hep-ph/0212003] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    F. Jegerlehner, M.Y. Kalmykov and O. Veretin, \( \overline{\mathrm{MS}} \) versus pole masses of gauge bosons. 2. Two loop electroweak fermion corrections, Nucl. Phys. B 658 (2003) 49 [hep-ph/0212319] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    F. Halzen and B.A. Kniehl, Δr beyond one loop, Nucl. Phys. B 353 (1991) 567 [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    S. Fanchiotti, B.A. Kniehl and A. Sirlin, Incorporation of QCD effects in basic corrections of the electroweak theory, Phys. Rev. D 48 (1993) 307 [hep-ph/9212285] [INSPIRE].ADSGoogle Scholar
  95. [95]
    B.A. Kniehl and A. Sirlin, Comparative analysis of three methods to evaluate vacuum polarization functions, Phys. Lett. B 318 (1993) 367 [INSPIRE].ADSGoogle Scholar
  96. [96]
    B.A. Kniehl, Two loop \( O({\alpha_s}{G_F}M_t^2) \) corrections to the fermionic decay rates of the standard model Higgs boson, Phys. Rev. D 50 (1994) 3314 [hep-ph/9405299] [INSPIRE].ADSGoogle Scholar
  97. [97]
    A. Djouadi and P. Gambino, Electroweak gauge bosons selfenergies: Complete QCD corrections, Phys. Rev. D 49 (1994) 3499 [Erratum ibid. D 53 (1996) 4111] [hep-ph/9309298] [INSPIRE].ADSGoogle Scholar
  98. [98]
    F. Jegerlehner, M.Y. Kalmykov and O. Veretin, Pole masses of gauge bosons: 2 loop electroweak corrections, Nucl. Instrum. Meth. A 502 (2003) 618 [INSPIRE].ADSGoogle Scholar
  99. [99]
    F. Jegerlehner and M.Y. Kalmykov, Steps towards full two-loop calculations for 2 fermion to 2 fermion processes: Running versus pole masses schemes, Nucl. Instrum. Meth. A 534 (2004) 299 [hep-ph/0404213] [INSPIRE].ADSGoogle Scholar
  100. [100]
    H. Arason et al., Renormalization group study of the standard model and its extensions. 1. The Standard model, Phys. Rev. D 46 (1992) 3945 [INSPIRE].ADSGoogle Scholar
  101. [101]
    J. Fleischer and F. Jegerlehner, Radiative Corrections to Higgs Decays in the Extended Weinberg-Salam Model, Phys. Rev. D 23 (1981) 2001 [INSPIRE].ADSGoogle Scholar
  102. [102]
  103. [103]
    M. Faisst, J.H. Kuhn and O. Veretin, Pole versus MS mass definitions in the electroweak theory, Phys. Lett. B 589 (2004) 35 [hep-ph/0403026] [INSPIRE].ADSGoogle Scholar
  104. [104]
    D. Eiras and M. Steinhauser, Two-loop O(αα s) corrections to the on-shell fermion propagator in the standard model, JHEP 02 (2006) 010 [hep-ph/0512099] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    G. ’t Hooft and M. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  106. [106]
    A.I. Davydychev and M.Y. Kalmykov, Massive Feynman diagrams and inverse binomial sums, Nucl. Phys. B 699 (2004) 3 [hep-th/0303162] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  107. [107]
    B.A. Kniehl, J.H. Piclum and M. Steinhauser, Relation between bottom-quark \( \overline{\mathrm{MS}} \) Yukawa coupling and pole mass, Nucl. Phys. B 695 (2004) 199 [hep-ph/0406254] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    M. Fischler and J. Oliensis, Two Loop Corrections to the Evolution of the Higgs-Yukawa Coupling Constant, Phys. Lett. B 119 (1982) 385 [INSPIRE].ADSGoogle Scholar
  109. [109]
    M. Fischler and J. Oliensis, Detailed Calculation of the Complete Two Loop Higgs-Yukawa β-function in an Arbitrary alpha Gauge, Phys. Rev. D 28 (1983) 2027 [INSPIRE].ADSGoogle Scholar
  110. [110]
    C. Ford, D. Jones, P. Stephenson and M. Einhorn, The Effective potential and the renormalization group, Nucl. Phys. B 395 (1993) 17 [hep-lat/9210033] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    I. Jack, Two loop background field calculations for gauge theories with scalar fields, J. Phys. A 16 (1983) 1083 [INSPIRE].ADSGoogle Scholar
  112. [112]
    I. Jack and H. Osborn, General two loop β-functions for gauge theories with arbitrary scalar fields, J. Phys. A 16 (1983) 1101 [INSPIRE].ADSGoogle Scholar
  113. [113]
    I. Jack, two loop β-functions for supersymmetric gauge theories, Phys. Lett. B 147 (1984) 405 [INSPIRE].ADSGoogle Scholar
  114. [114]
    I. Jack and H. Osborn, general background field calculations with fermion fields, Nucl. Phys. B 249 (1985) 472 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  115. [115]
    M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    M.E. Machacek and M.T. Vaughn, Two-loop renormalization group equations in a general quantum field theory (II). Yukawa couplings, Nucl. Phys. B 236 (1984) 221.ADSCrossRefGoogle Scholar
  117. [117]
    M.E. Machacek and M.T. Vaughn, Two-loop renormalization group equations in a general quantum field theory (III). Scalar quartic couplings, Nucl. Phys. B 249 (1985) 70.ADSCrossRefGoogle Scholar
  118. [118]
    A. Strumia, Higgs weights 125 GeV! Now what?, talk given at Implications of LHC results for TeV-scale physics, CERN, Geneva, 28 March 2012 [http://indico.cern.ch/materialDisplay.py?contribId=47&sessionId=20&materialId=slides&confId=162621].
  119. [119]
    G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].ADSCrossRefGoogle Scholar
  120. [120]
    S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Fedor Bezrukov
    • 1
    • 2
    Email author
  • Mikhail Yu. Kalmykov
    • 3
  • Bernd A. Kniehl
    • 3
  • Mikhail Shaposhnikov
    • 4
  1. 1.Physics DepartmentUniversity of ConnecticutStorrsU.S.A.
  2. 2.RIKEN-BNL Research CenterBrookhaven National LaboratoryUptonU.S.A.
  3. 3.II. Institut für Theoretische PhysikUniversität HamburgHamburgGermany
  4. 4.Institut de Théorie des Phénomènes Physiques, École Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations