Advertisement

Journal of High Energy Physics

, 2012:119 | Cite as

Charged Higgs bosons in single top production at the LHC

  • Renato Guedes
  • Stefano Moretti
  • Rui Santos
Article

Abstract

We show that a light charged Higgs boson signal via τ ± ν decay can be established at the Large Hadron Collider (LHC) also in the case of single top production. This process complements searches for the same signal in the case of charged Higgs bosons emerging from \( t\overline{t} \) production. The models accessible include the Minimal Supersymmetric Standard Model (MSSM) as well a variety of 2-Higgs Doublet Models (2HDMs). High energies and luminosities are however required, thereby restricting interest on this mode to the case of the LHC running at 14 TeV with design configuration.

Keywords

Higgs Physics Beyond Standard Model 

References

  1. [1]
    ATLAS collaboration, G. Aad et al., Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7\,TeV \) with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7\,TeV \), Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].ADSGoogle Scholar
  3. [3]
    LEP Higgs Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL collaboration, Search for charged Higgs bosons: Preliminary combined results using LEP data collected at energies up to 209 GeV, hep-ex/0107031 [INSPIRE].
  4. [4]
    H.E. Logan and D. MacLennan, Charged Higgs phenomenology in the lepton-specific two Higgs doublet model, Phys. Rev. D 79 (2009) 115022 [arXiv:0903.2246] [INSPIRE].ADSGoogle Scholar
  5. [5]
    CDF, D0 collaboration, P. Gutierrez, Review of charged Higgs searches at the Tevatron, FERMI Note FERMILAB-CONF-10-540-E.Google Scholar
  6. [6]
    D0 collaboration, V. Abazov et al., Search for charged Higgs bosons in decays of top quarks, Phys. Rev. D 80 (2009) 051107 [arXiv:0906.5326] [INSPIRE].ADSGoogle Scholar
  7. [7]
    CDF collaboration, Search for charged Higgs boson in tbart decay products, CDF Note CDF/PUB/TOP/PUBLIC/7712 (2005).Google Scholar
  8. [8]
    ATLAS collaboration, G. Aad et al., Search for charged Higgs bosons decaying via H ±τ ν in top quark pair events using pp collision data at \( \sqrt{s}=7\,TeV \) with the ATLAS detector, JHEP 06 (2012) 039 [arXiv:1204.2760] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    ATLAS collaboration, A Search for a light charged Higgs boson decaying to cs in pp collisions at \( \sqrt{s}=7\,TeV \) with the ATLAS detector, ATLAS-CONF-2011-094 (2011).Google Scholar
  10. [10]
    CMS collaboration, H +τ in Top quark decays, CMS-HIG-11-008 (2011).Google Scholar
  11. [11]
    CMS collaboration, Search for a light charged Higgs boson in top quark decays in pp collisions at \( \sqrt{s}=7\,TeV \), CMS-HIG-11-019 (2012).Google Scholar
  12. [12]
    V.D. Barger, J. Hewett and R. Phillips, New constraints on the charged Higgs sector in two Higgs doublet models, Phys. Rev. D 41 (1990) 3421 [INSPIRE].ADSGoogle Scholar
  13. [13]
    M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Models of Yukawa interaction in the two Higgs doublet model and their collider phenomenology, Phys. Rev. D 80 (2009) 015017 [arXiv:0902.4665] [INSPIRE].ADSGoogle Scholar
  14. [14]
    W.-S. Hou and R. Willey, Effects of Charged Higgs Bosons on the Processes bsgamma, bsg and bs+, Phys. Lett. B 202(1988) 591 [INSPIRE].ADSGoogle Scholar
  15. [15]
    M. Ciuchini, G. Degrassi, P. Gambino and G. Giudice, Next-to-leading QCD corrections to BX sγ: Standard model and two Higgs doublet model, Nucl. Phys. B 527(1998) 21 [hep-ph/9710335] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    F. Borzumati and C. Greub, 2HDMs predictions for \( \overline{B}\to {X_s} \) γ in NLO QCD, Phys. Rev. D 58 (1998) 074004 [hep-ph/9802391] [INSPIRE].ADSGoogle Scholar
  17. [17]
    F. Borzumati and C. Greub, Two Higgs doublet model predictions for \( \overline{B}\to {X_s} \) γ in NLO QCD. (Addendum), Phys. Rev. D 59 (1999) 057501 .ADSGoogle Scholar
  18. [18]
    Particle Data Group collaboration, C. Amsler et al., Review of Particle Physics, Phys. Lett. B 667 (2008) 1 [INSPIRE].ADSGoogle Scholar
  19. [19]
    Belle collaboration, A. Limosani et al., Measurement of Inclusive Radiative B-meson Decays with a Photon Energy Threshold of 1.7 GeV, Phys. Rev. Lett. 103 (2009) 241801 [arXiv:0907.1384] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Su and B. Thomas, The LHC Discovery Potential of a Leptophilic Higgs, Phys. Rev. D 79 (2009) 095014 [arXiv:0903.0667] [INSPIRE].ADSGoogle Scholar
  21. [21]
    M. Aoki et al., Light Charged Higgs bosons at the LHC in 2HDMs, Phys. Rev. D 84 (2011) 055028 [arXiv:1104.3178] [INSPIRE].ADSGoogle Scholar
  22. [22]
    R. Guedes, S. Kanemura, S. Moretti, R. Santos and K. Yagyu, Charged Higgs Boson Benchmarks in the CP-conserving 2HDM, PoS(CHARGED 2010)037.Google Scholar
  23. [23]
    M. Aoki, S. Kanemura and O. Seto, Neutrino mass, Dark Matter and Baryon Asymmetry via TeV-Scale Physics without Fine-Tuning, Phys. Rev. Lett. 102 (2009) 051805 [arXiv:0807.0361] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Aoki, S. Kanemura and O. Seto, A Model of TeV Scale Physics for Neutrino Mass, Dark Matter and Baryon Asymmetry and its Phenomenology, Phys. Rev. D 80 (2009) 033007 [arXiv:0904.3829] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Aoki, S. Kanemura and K. Yagyu, Triviality and vacuum stability bounds in the three-loop neutrino mass model, Phys. Rev. D 83 (2011) 075016 [arXiv:1102.3412] [INSPIRE].ADSGoogle Scholar
  26. [26]
    H.-S. Goh, L.J. Hall and P. Kumar, The Leptonic Higgs as a Messenger of Dark Matter, JHEP 05 (2009) 097 [arXiv:0902.0814] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    N. Kidonakis, Two-loop soft anomalous dimensions for single top quark associated production with a W or H , Phys. Rev. D 82 (2010) 054018 [arXiv:1005.4451] [INSPIRE].ADSGoogle Scholar
  28. [28]
    N. Kidonakis, NNLL resummation for s-channel single top quark production, Phys. Rev. D 81 (2010) 054028 [arXiv:1001.5034] [INSPIRE].ADSGoogle Scholar
  29. [29]
    N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production, Phys. Rev. D 83 (2011) 091503 [arXiv:1103.2792] [INSPIRE].ADSGoogle Scholar
  30. [30]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, JHEP 09 (2009) 111 [Erratum ibid. 1002 (2010) 011] [arXiv:0907.4076] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method, Eur. Phys. J. C 71 (2011) 1547 [arXiv:1009.2450] [INSPIRE].ADSGoogle Scholar
  34. [34]
    S. Frixione, P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP 09 (2007) 126 [arXiv:0707.3088] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].ADSGoogle Scholar
  38. [38]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Pukhov, CalcHEP 2.3: MSSM, structure functions, event generation, batchs and generation of matrix elements for other packages, hep-ph/0412191 [INSPIRE].
  41. [41]
    P.Z. Skands, The Perugia Tunes, arXiv:0905.3418 [INSPIRE].
  42. [42]
    ATLAS collaboration, ATLAS Monte Carlo tunes for MC09, PHYS-PUB-2010-002 (2010).Google Scholar
  43. [43]
    B.P. Kersevan and E. Richter-Was, The Monte Carlo event generator AcerMC version 2.0 with interfaces to PYTHIA 6.2 and HERWIG 6.5, hep-ph/0405247 [INSPIRE].
  44. [44]
    J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].ADSGoogle Scholar
  45. [45]
    Code available from http://mcfm.fnal.gov/.
  46. [46]
    M. Mangano, Merging multijet matrix elements and shower evolution in hadronic collisions, http://cern.ch/%7Emlm/talks/lund-alpgen.pdf (2004).
  47. [47]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  48. [48]
    V. Barger and R.J.N. Phillips, Collider Physics, Addison-Wesley Publishing Company, New York U.S.A. (1997).Google Scholar
  49. [49]
    J.M. Campbell, R.K. Ellis and D.L. Rainwater, Next-to-leading order QCD predictions for W + 2 jet and Z + 2 jet production at the CERN LHC, Phys. Rev. D 68(2003) 094021 [hep-ph/0308195] [INSPIRE].ADSGoogle Scholar
  50. [50]
    F.M.A. Veloso, J. Carvalho and A. Onofre, Study of ATLAS sensitivity to FCNC top quark decays, CERN-THESIS-2008-106 (2008).Google Scholar
  51. [51]
    ATLAS collaboration, G. Aad et al., Search for charged Higgs bosons decaying via H +τ ν in top quark pair events using pp collision data at \( \sqrt{s}=7\,TeV \) with the ATLAS detector, JHEP 06 (2012) 039 [arXiv:1204.2760] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    ATLAS collaboration, A.F. Saavedra, Search for charged Higgs bosons decaying via H ±τ ν in tt events with the ATLAS detector, talk given at ICHEP2012, Melbourne Australia (2012).Google Scholar
  53. [53]
    CMS collaboration, S. Chatrchyan et al., Search for a light charged Higgs boson in top quark decays in pp collisions at \( \sqrt{s}=7\,TeV \), JHEP 07 (2012) 143 [arXiv:1205.5736] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    CMS collaboration, C. Veelken, Search for Higgs Particles in MSSM SUSY, talk given at ICHEP2012, Melbourne Australia (2012).Google Scholar
  55. [55]
    G. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    P. Ferreira, R. Santos and A. Barroso, Stability of the tree-level vacuum in two Higgs doublet models against charge or CP spontaneous violation, Phys. Lett. B 603 (2004) 219 [Erratum ibid. B 629 (2005) 114] [hep-ph/0406231] [INSPIRE].ADSGoogle Scholar
  57. [57]
    I.F. Ginzburg, M. Krawczyk and P. Osland, Two Higgs doublet models with CP-violation, hep-ph/0211371 [INSPIRE].
  58. [58]
    A.W. El Kaffas, W. Khater, O.M. Ogreid and P. Osland, Consistency of the two Higgs doublet model and CP-violation in top production at the LHC, Nucl. Phys. B 775 (2007) 45 [hep-ph/0605142] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    A. Arhrib, E. Christova, H. Eberl and E. Ginina, CP violation in charged Higgs production and decays in the Complex Two Higgs Doublet Model, JHEP 04 (2011) 089 [arXiv:1011.6560] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A. Barroso, P. Ferreira, R. Santos and J.P. Silva, Probing the scalar-pseudoscalar mixing in the 125 GeV Higgs particle with current data, Phys. Rev. D 86 (2012) 015022 [arXiv:1205.4247] [INSPIRE].ADSGoogle Scholar
  61. [61]
    L. Basso et al., Probing the charged Higgs boson at the LHC in the CP-violating type-II 2HDM, arXiv:1205.6569 [INSPIRE].
  62. [62]
    ATLAS collaboration, G. Aad et al., Expected Performance of the ATLAS ExperimentDetector, Trigger and Physics, arXiv:0901.0512 [INSPIRE].
  63. [63]
    CMS collaboration, Physics Technical Design Report. Volume 2: Physics Performance, CERN/LHCC 2006-021 (2006).Google Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Centro de F´ısica Teórica e Computacional, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
  2. 2.School of Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.
  3. 3.Instituto Superior de Engenharia de LisboaLisboaPortugal

Personalised recommendations