Measurement of the neutrino velocity with the OPERA detector in the CNGS beam

  • The OPERA collaboration
  • T. Adam
  • N. Agafonova
  • A. Aleksandrov
  • O. Altinok
  • P. Alvarez Sanchez
  • A. Anokhina
  • S. Aoki
  • A. Ariga
  • T. Ariga
  • D. Autiero
  • A. Badertscher
  • A. Ben Dhahbi
  • A. Bertolin
  • C. Bozza
  • T. Brugière
  • R. Brugnera
  • F. Brunet
  • G. Brunetti
  • S. Buontempo
  • B. Carlus
  • F. Cavanna
  • A. Cazes
  • L. Chaussard
  • M. Chernyavsky
  • V. Chiarella
  • A. Chukanov
  • G. Colosimo
  • M. Crespi
  • N. D’Ambrosio
  • G. De Lellis
  • M. De Serio
  • Y. Déclais
  • P. del Amo Sanchez
  • F. Di Capua
  • A. Di Crescenzo
  • D. Di Ferdinando
  • N. Di Marco
  • S. Dmitrievsky
  • M. Dracos
  • D. Duchesneau
  • S. Dusini
  • T. Dzhatdoev
  • J. Ebert
  • I. Efthymiopoulos
  • O. Egorov
  • A. Ereditato
  • L. S. Esposito
  • J. Favier
  • T. Ferber
  • R. A. Fini
  • T. Fukuda
  • A. Garfagnini
  • G. Giacomelli
  • M. Giorgini
  • M. Giovannozzi
  • C. Girerd
  • J. Goldberg
  • C. Göllnitz
  • D. Golubkov
  • L. Goncharova
  • Y. Gornushkin
  • G. Grella
  • F. Grianti
  • E. Gschwendtner
  • C. Guerin
  • A. M. Guler
  • C. Gustavino
  • C. Hagner
  • K. Hamada
  • T. Hara
  • R. Enikeev
  • M. Hierholzer
  • A. Hollnagel
  • M. Ieva
  • H. Ishida
  • K. Ishiguro
  • K. Jakovcic
  • C. Jollet
  • M. Jones
  • F. Juget
  • M. Kamiscioglu
  • J. Kawada
  • S. H. Kim
  • M. Kimura
  • E. Kiritsis
  • N. Kitagawa
  • B. Klicek
  • J. Knuesel
  • K. Kodama
  • M. Komatsu
  • U. Kose
  • I. Kreslo
  • C. Lazzaro
  • J. Lenkeit
  • A. Ljubicic
  • A. Longhin
  • A. Malgin
  • G. Mandrioli
  • J. Marteau
  • T. Matsuo
  • V. Matveev
  • N. Mauri
  • A. Mazzoni
  • E. Medinaceli
  • F. Meisel
  • A. Meregaglia
  • P. Migliozzi
  • S. Mikado
  • D. Missiaen
  • P. Monacelli
  • K. Morishima
  • U. Moser
  • M. T. Muciaccia
  • N. Naganawa
  • T. Naka
  • M. Nakamura
  • T. Nakano
  • Y. Nakatsuka
  • D. Naumov
  • V. Nikitina
  • F. Nitti
  • S. Ogawa
  • N. Okateva
  • A. Olchevsky
  • O. Palamara
  • A. Paoloni
  • B. D. Park
  • I. G. Park
  • A. Pastore
  • L. Patrizii
  • E. Pennacchio
  • H. Pessard
  • C. Pistillo
  • N. Polukhina
  • M. Pozzato
  • K. Pretzl
  • F. Pupilli
  • R. Rescigno
  • F. Riguzzi
  • T. Roganova
  • H. Rokujo
  • G. Rosa
  • I. Rostovtseva
  • A. Rubbia
  • A. Russo
  • V. Ryasny
  • O. Ryazhskaya
  • O. Sato
  • Y. Sato
  • Z. Sahnoun
  • A. Schembri
  • J. Schuler
  • L. Scotto Lavina
  • J. Serrano
  • I. Shakiryanova
  • A. Sheshukov
  • H. Shibuya
  • G. Shoziyoev
  • S. Simone
  • M. Sioli
  • C. Sirignano
  • G. Sirri
  • J. S. Song
  • M. Spinetti
  • L. Stanco
  • N. Starkov
  • S. Stellacci
  • M. Stipcevic
  • T. Strauss
  • S. Takahashi
  • M. Tenti
  • F. Terranova
  • I. Tezuka
  • V. Tioukov
  • P. Tolun
  • N. T. Trani
  • S. Tufanli
  • P. Vilain
  • M. Vladimirov
  • L. Votano
  • J.-L. Vuilleumier
  • G. Wilquet
  • B. Wonsak
  • J. Wurtz
  • V. Yakushev
  • C. S. Yoon
  • J. Yoshida
  • Y. Zaitsev
  • S. Zemskova
  • A. Zghiche
Open Access
Article

Abstract

The OPERA neutrino experiment at the underground Gran Sasso Laboratory has measured the velocity of neutrinos from the CERN CNGS beam over a baseline of about 730 km. The measurement is based on data taken by OPERA in the years 2009, 2010 and 2011. Dedicated upgrades of the CNGS timing system and of the OPERA detector, as well as a high precision geodesy campaign for the measurement of the neutrino baseline, allowed reaching comparable systematic and statistical accuracies.

An arrival time of CNGS muon neutrinos with respect to the one computed assuming the speed of light in vacuum of \( \left( {6.5\pm 7.4\left( {\mathrm{stat}.} \right)_{-8.0}^{+8.3}\left( {\mathrm{sys}.} \right)} \right)\mathrm{ns} \) was measured corresponding to a relative difference of the muon neutrino velocity with respect to the speed of light \( {{{\left( {\upsilon -c} \right)}} \left/ {c} \right.}=\left( {2.7\pm 3.1\left( {\mathrm{stat}.} \right)_{-3.3}^{+3.4}\left( {\mathrm{sys}.} \right)} \right)\times {10^{-6 }} \). The above result, obtained by comparing the time distributions of neutrino interactions and of protons hitting the CNGS target in 10.5 μs long extractions, was confirmed by a test performed at the end of 2011 using a short bunch beam allowing to measure the neutrino time of flight at the single interaction level.

Keywords

Neutrino Detectors and Telescopes 

References

  1. [1]
    OPERA collaboration, R. Acquafredda et al., The OPERA experiment in the CERN to Gran Sasso neutrino beam, 2009 JINST 4 P04018 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Ereditato, K. Niwa and P. Strolin, The emulsion technique for short, medium and long baseline ν μν τ oscillation experiments, INFN-AE-97-06, CERN, Geneva Switzerland (1997) [DAPNU-97-07] [INSPIRE].Google Scholar
  3. [3]
    OPERA collaboration, H. Shibuya et al., Letter of intent: the OPERA emulsion detector for a long-baseline neutrino-oscillation experiment, CERN-SPSC-97-24, CERN, Geneva Switzerland (2007) [LNGS-LOI-8-97] [INSPIRE].Google Scholar
  4. [4]
    OPERA collaboration, M. Guler et al., An appearance experiment to search for ν μν τ oscillations in the CNGS beam: experimental proposal, CERN-SPSC-2000-028, CERN, Geneva Switzerland (2000) [LNGS-P25-00] [INSPIRE].Google Scholar
  5. [5]
    OPERA collaboration, M. Guler et al., Status report on the OPERA experiment, CERN-SPSC-2001-025, CERN, Geneva Switzerland (2001) [LNGS-EXP-30-2001-ADD-1] [INSPIRE].Google Scholar
  6. [6]
    OPERA collaboration, N. Agafonova et al., Observation of a first ν τ candidate in the OPERA experiment in the CNGS beam, Phys. Lett. B 691 (2010) 138 [arXiv:1006.1623] [INSPIRE].ADSGoogle Scholar
  7. [7]
    OPERA collaboration, N. Agafonova et al., Search for ν μν τ oscillation with the OPERA experiment in the CNGS beam, New J. Phys. 14 (2012) 033017 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    K. Elsener ed., The CERN neutrino beam to Gran Sasso (conceptual technical design), CERN-98-02, CERN, Geneva Switzerland (1998) [INFN-AE-98-05] [INSPIRE].Google Scholar
  9. [9]
    R. Bailey et al., The CERN neutrino beam to Gran Sasso (CNGS)addendum to CERN-98-02, INFN-AE-98-05, CERN-SL-99-34-DI, CERN, Geneva Switzerland (1999) [INFN-AE-99-05] [INSPIRE].Google Scholar
  10. [10]
    C. Weinheimer et al., High precision measurement of the tritium beta spectrum near its endpoint and upper limit on the neutrino mass, Phys. Lett. B 460 (1999) 219 [Erratum ibid. B 464 (1999) 352] [INSPIRE].ADSGoogle Scholar
  11. [11]
    V. Lobashev et al., Direct search for mass of neutrino and anomaly in the tritium beta spectrum, Phys. Lett. B 460 (1999) 227 [INSPIRE].ADSGoogle Scholar
  12. [12]
    G.R. Kalbfleisch, N. Baggett, E.C. Fowler and J. Alspector, Experimental comparison of neutrino, anti-neutrino, and muon velocities, Phys. Rev. Lett. 43 (1979) 1361 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J. Alspector et al., Experimental comparison of neutrino and muon velocities at Fermilab, Phys. Rev. Lett. 36 (1976) 837 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    MINOS collaboration, P. Adamson et al., Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam, Phys. Rev. D 76 (2007) 072005 [arXiv:0706.0437] [INSPIRE].ADSGoogle Scholar
  15. [15]
    KAMIOKANDE-II collaboration, K. Hirata et al., Observation of a neutrino burst from the supernova SN 1987a, Phys. Rev. Lett. 58 (1987) 1490 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    R. Bionta et al., Observation of a neutrino burst in coincidence with supernova SN 1987a in the large magellanic cloud, Phys. Rev. Lett. 58 (1987) 1494 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M.J. Longo, Tests of relativity from SN 1987a, Phys. Rev. D 36 (1987) 3276 [INSPIRE].ADSGoogle Scholar
  18. [18]
    OPERA collaboration, T. Adam et al., Measurement of the neutrino velocity with the OPERA detector in the CNGS beam, arXiv:1109.4897v2.
  19. [19]
    T. Adam et al., The OPERA experiment target tracker, Nucl. Instrum. Meth. A 577 (2007) 523 [physics/0701153] [INSPIRE].ADSGoogle Scholar
  20. [20]
    XLi: precise, versatile and flexible time and frequency system webpage, http://www.symmetricom.com/products/gps-solutions/gps-time-frequency-receivers/XLi/.
  21. [21]
    H. Jacob et al., A 40 MHz bunch by bunch intensity measurement for the CERN SPS and LHC, CERN-AB-2003-056-BDI, CERN, Geneva Switzerland (2003) [INSPIRE].Google Scholar
  22. [22]
    Agilent Technologies, Agilent Acqiris digitiser model DP110: technical supportmanualspart number U 1067A, http://www.agilent.com/.
  23. [23]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  24. [24]
    FLUKA software package webpage, http://www.fluka.org/.
  25. [25]
    CNGS neutrino flux calculations webpage, http://www.mi.infn.it/∼psala/Icarus/cngs.html.
  26. [26]
    G. Battistoni et al., The FLUKA code: description and benchmarking, AIP Conf. Proc. 896 (2007) 31 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    OPERA collaboration, N. Agafonova et al., Study of neutrino interactions with the electronic detectors of the OPERA experiment, New J. Phys. 13 (2011) 053051 [arXiv:1102.1882] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    P. Defraigne et al., Initial testing of a new GPS receiver, the PolaRx 2e, for time and frequency transfer using dual frequency codes and carrier phases, in 35th Annual Precise Time and Time Interval (PTTI) Meeting, San Diego U.S.A. (2003).Google Scholar
  29. [29]
    D.W. Allan and M.A. Weiss, Accurate time and frequency transfer during common-view of a GPS satellite, in Proc. 34th Ann. Freq. Control Symposium, USAERADCOM, Ft. Monmouth WJ U.S.A. May 1980.Google Scholar
  30. [30]
    Symmetricon Cs4000 frequency standards, symmetricom, time and frequency system webpage, http://www.symmetricom.com/products/frequency-references/cesium-frequency-standard/Cs4000/.
  31. [31]
    D. Allan and C. Thomas, Technical directives for standardization of GPS time receiver software to be implemented for improving the accuracy of GPS common-view time transfer, Metrologia 31 (1994) 69.ADSCrossRefGoogle Scholar
  32. [32]
    J. Asoubin and W. Lewandowksi, CGGTTS GPS/GLONASS data format V02, BIPM: Bureau International des Poids et Measures, Sévres France November 1998.Google Scholar
  33. [33]
    P. Defraigne and G. Petit, Time transfer to TAI using geodetic receivers, Metrologia 40 (2003) 184.ADSCrossRefGoogle Scholar
  34. [34]
    J. Levine, A review of time and frequency transfer methods, Metrologia 45 (2008) S162.ADSCrossRefGoogle Scholar
  35. [35]
    METAS Measurement Reports No 119-00210, No 119-00209, Differential calibration of matched GPS receiver, antenna and cable against reference GPS link METAS WAB2 CH01 for P3 common-view time transfer, Physikalisch-Technische Bundesanstalt (PTB), http://www.ptb.de/, Germany.
  36. [36]
    T. Feldmann, Relative calibration of the GPS time link between CERN and LNGS, report calibration CERN-LNGS 2011, OPERA public note 134, http://operaweb.lngs.infn.it:2080/Opera/publicnotes/note134.pdf, (2011).
  37. [37]
    T. Feldmann et al., Advanced GPS-based time link calibration with PTBs new GPS calibration setup, in 42nd Annual Precise Time and Time Interval (PTTI) Meeting, Reston U.S.A. (2010).Google Scholar
  38. [38]
    IERS: International Earth Rotation Service webpage, http://www.iers.org/nn_11216/IERS/EN/IERSHome/home.html.
  39. [39]
    C. Boucher and Z. Altamimi, Memo: specifications for reference frame fixing in the analysis of a EUREF GPS campaign, http://etrs89.ensg.ign.fr/memo-V7.pdf.
  40. [40]
    G. Colosimo et al., Determination of the CNGS global geodesy, OPERA public note 132, http://operaweb.lngs.infn.it:2080/Opera/publicnotes/note132.pdf, (2011).
  41. [41]
    EUREF permanent network webpage, http://www.epncb.oma.be/.
  42. [42]
  43. [43]
    Z. Altamimi et al., ITRF2008: an improved solution of the international terrestrial reference frame, J. Geodesy 85 (2011) 457.ADSCrossRefGoogle Scholar
  44. [44]
    P.J. Mendes Cerveira et al., Contributions of GPS and VLBI for understanding station motions, J. Geodyn. 41 (2006) 87.CrossRefGoogle Scholar
  45. [45]
    OPERA collaboration, J. Marteau, The OPERA global readout and GPS distribution system, Nucl. Instrum. Meth. A 617 (2010) 291 [arXiv:0906.1494] [INSPIRE].ADSGoogle Scholar
  46. [46]
    OPERA collaboration, R. Acquafredda et al., First events from the CNGS neutrino beam detected in the OPERA experiment, New J. Phys. 8 (2006) 303 [hep-ex/0611023] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Bertolin and N.T. Tran, OpCarac: an algorithm for the classification of the neutrino interactions recorded by OPERA, OPERA public note 100, http://operaweb.lngs.infn.it:2080/Opera/publicnotes/note100.pdf, (2009).
  48. [48]
    P. Alvarez, The CTR user guide, CERN EDMS document of the beam timing group, July 17 2007.Google Scholar
  49. [49]
    J. Serrano et al., Nanosecond level UTC timing generation and stamping in the CERNs LHC, in Proceedings of ICALEPCS2003, (2003), pg. 119 [INSPIRE].
  50. [50]
    J. Lewis et al., The evolution of the CERN SPS timing system for the LHC era, in Proceedings of ICALEPCS2003, (2003), pg. 125 [INSPIRE].
  51. [51]
    J. Serrano et al., Inter-laboratory synchronisation for the CNGS project, in Proceedings of EPAC2006, Edinburgh U.K. (2006), pg. 3092.Google Scholar
  52. [52]
    L. Jensen, Beam instrumentation for the CNGS facility, AB-Note-2006-022, CERN, Geneva Switzerland (2006).Google Scholar
  53. [53]
    Master clock GPS 2000 webpage, http://www.esat.it/EN/default.htm.
  54. [54]
    MACRO collaboration, M. Ambrosio et al., A search for lightly ionizing particles with the MACRO detector, Phys. Rev. D 62 (2000) 052003 [hep-ex/0002029] [INSPIRE].ADSGoogle Scholar
  55. [55]
    MACRO collaboration, M. Ambrosio et al., The MACRO detector at Gran Sasso, Nucl. Instrum. Meth. A 486 (2002) 663 [INSPIRE].ADSGoogle Scholar
  56. [56]
    A. Lucotte et al., A front-end read out chip for the OPERA scintillator tracker, Nucl. Instrum. Meth. A 521 (2004) 378 [INSPIRE].ADSGoogle Scholar
  57. [57]
    A.L.S. GmbH, The picosecond laser diode systems, http://www.alsgmbh.com/pilas.htm.
  58. [58]
    E. Kiritsitis and F. Nitti, Special and general relativity corrections to the OPERA neutrino velocity measurement, OPERA public note 136, http://operaweb.lngs.infn.it:2080/Opera/publicnotes/note136.pdf, (2011).
  59. [59]
    G. Brunetti, Neutrino velocity measurement with the OPERA experiment in the CNGS beams, Ph.D. thesis, http://operaweb.lngs.infn.it:2080/Opera/ptb/theses/theses/Brunetti-Giulia_phdthesis.pdf, in joint supervision from Université Claude Bernard Lyon-I and Università di Bologna, Lyon France and Bologna Italy (2011).
  60. [60]
    OPERA collaboration, Report from the OPERA collaboration to the scientific committees on recent achievements concerning the neutrino velocity analysis, memo to the SPS and LNGS scientific committees, http://operaweb.lngs.infn.it:2080/Opera/ptb/pubref/pubref/OPERAReport0312toSC.pdf, March 28 2012.
  61. [61]
    LVD-OPERA collaboration, A. Zichichi and A. Ereditato, Determination of a time-shift in the OPERA set-up using high energy horizontal muons in the LVD and OPERA detectors, memo to the SPSC and LNGSSC scientific committees, http://operaweb.lngs.infn.it:2080/Opera/ptb/pubref/pubref/LVD-OPERA_15_V1-Final.pdf, March 28 2012.
  62. [62]
    LVD and OPERA collaborations, N.Y. Agafonova et al., Determination of a time-shift in the OPERA set-up using high energy horizontal muons in the LVD and OPERA detectors, Eur. Phys. J. Plus 127 (2012) 71 [arXiv:1206.2488] [INSPIRE].CrossRefGoogle Scholar
  63. [63]
    MACRO collaboration, M. Ambrosio et al., Measurement of the atmospheric neutrino induced upgoing muon flux using MACRO, Phys. Lett. B 434 (1998) 451 [hep-ex/9807005] [INSPIRE].ADSGoogle Scholar
  64. [64]
    C. Bovet et al., The fast shaving ejection for beam transfer from the CPS to the CERN 300 GeV machine, in Proceedings of Particle Accelerator Conference, San Francisco U.S.A. (1973) [IEEE Trans. Nucl. Sci. 20 (1973) 438] [INSPIRE].
  65. [65]
    M. Giovannozzi et al., The CERN PS multi-turn extraction based on beam splitting in stable islands of transverse phase space: design report, CERN-2006-011, CERN, Geneva Switzerland (2006) [INSPIRE].Google Scholar
  66. [66]
    J.-M. Cravero, E. Gschwendtner and I. Kozsar, Setting up of the CNGS horns during the yearly CNGS beam start up, EDMS nr. 1166177, OPERA public note 137, http://operaweb.lngs.infn.it:2080/Opera/publicnotes/note137.pdf, (2011).
  67. [67]
    L. Bruno and I. Efthymiopoulos, CNGS targetexplained, OPERA public note 138, http://operaweb.lngs.infn.it:2080/Opera/publicnotes/note138.pdf, (2011).
  68. [68]
    ICARUS collaboration, M. Antonello et al., Measurement of the neutrino velocity with the ICARUS detector at the CNGS beam, Phys. Lett. B 713 (2012) 17 [arXiv:1203.3433] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  • The OPERA collaboration
  • T. Adam
    • 1
  • N. Agafonova
    • 2
  • A. Aleksandrov
    • 3
  • O. Altinok
    • 4
  • P. Alvarez Sanchez
    • 5
  • A. Anokhina
    • 6
  • S. Aoki
    • 7
  • A. Ariga
    • 8
  • T. Ariga
    • 8
  • D. Autiero
    • 9
  • A. Badertscher
    • 10
  • A. Ben Dhahbi
    • 8
  • A. Bertolin
    • 11
  • C. Bozza
    • 12
  • T. Brugière
    • 9
  • R. Brugnera
    • 11
    • 13
  • F. Brunet
    • 14
  • G. Brunetti
    • 9
    • 15
    • 43
  • S. Buontempo
    • 3
  • B. Carlus
    • 9
  • F. Cavanna
    • 17
  • A. Cazes
    • 9
  • L. Chaussard
    • 9
  • M. Chernyavsky
    • 18
  • V. Chiarella
    • 19
  • A. Chukanov
    • 20
  • G. Colosimo
    • 21
  • M. Crespi
    • 21
  • N. D’Ambrosio
    • 22
  • G. De Lellis
    • 3
    • 23
  • M. De Serio
    • 24
  • Y. Déclais
    • 9
  • P. del Amo Sanchez
    • 14
  • F. Di Capua
    • 3
  • A. Di Crescenzo
    • 3
    • 23
  • D. Di Ferdinando
    • 16
  • N. Di Marco
    • 22
  • S. Dmitrievsky
    • 20
  • M. Dracos
    • 1
  • D. Duchesneau
    • 14
  • S. Dusini
    • 11
  • T. Dzhatdoev
    • 6
  • J. Ebert
    • 25
  • I. Efthymiopoulos
    • 5
  • O. Egorov
    • 26
  • A. Ereditato
    • 8
  • L. S. Esposito
    • 10
  • J. Favier
    • 14
  • T. Ferber
    • 25
  • R. A. Fini
    • 24
  • T. Fukuda
    • 27
  • A. Garfagnini
    • 11
    • 13
  • G. Giacomelli
    • 15
    • 16
  • M. Giorgini
    • 15
    • 16
    • 44
  • M. Giovannozzi
    • 5
  • C. Girerd
    • 9
  • J. Goldberg
    • 28
  • C. Göllnitz
    • 25
  • D. Golubkov
    • 26
  • L. Goncharova
    • 18
  • Y. Gornushkin
    • 20
  • G. Grella
    • 12
  • F. Grianti
    • 19
    • 29
  • E. Gschwendtner
    • 5
  • C. Guerin
    • 9
  • A. M. Guler
    • 4
  • C. Gustavino
    • 30
  • C. Hagner
    • 25
  • K. Hamada
    • 31
  • T. Hara
    • 7
  • R. Enikeev
    • 2
  • M. Hierholzer
    • 25
    • 43
  • A. Hollnagel
    • 25
  • M. Ieva
    • 24
  • H. Ishida
    • 27
  • K. Ishiguro
    • 31
  • K. Jakovcic
    • 32
  • C. Jollet
    • 1
  • M. Jones
    • 5
  • F. Juget
    • 8
  • M. Kamiscioglu
    • 4
  • J. Kawada
    • 8
  • S. H. Kim
    • 33
    • 45
  • M. Kimura
    • 27
  • E. Kiritsis
    • 34
  • N. Kitagawa
    • 31
  • B. Klicek
    • 32
  • J. Knuesel
    • 8
  • K. Kodama
    • 35
  • M. Komatsu
    • 31
  • U. Kose
    • 11
  • I. Kreslo
    • 8
  • C. Lazzaro
    • 10
  • J. Lenkeit
    • 25
  • A. Ljubicic
    • 32
  • A. Longhin
    • 19
  • A. Malgin
    • 2
  • G. Mandrioli
    • 16
  • J. Marteau
    • 9
  • T. Matsuo
    • 27
  • V. Matveev
    • 2
  • N. Mauri
    • 19
  • A. Mazzoni
    • 21
  • E. Medinaceli
    • 11
    • 13
  • F. Meisel
    • 8
  • A. Meregaglia
    • 1
  • P. Migliozzi
    • 3
  • S. Mikado
    • 27
  • D. Missiaen
    • 5
  • P. Monacelli
    • 17
  • K. Morishima
    • 31
  • U. Moser
    • 8
  • M. T. Muciaccia
    • 24
    • 36
  • N. Naganawa
    • 31
  • T. Naka
    • 31
  • M. Nakamura
    • 31
  • T. Nakano
    • 31
  • Y. Nakatsuka
    • 31
  • D. Naumov
    • 20
  • V. Nikitina
    • 6
  • F. Nitti
    • 37
  • S. Ogawa
    • 27
  • N. Okateva
    • 18
  • A. Olchevsky
    • 20
  • O. Palamara
    • 22
  • A. Paoloni
    • 19
  • B. D. Park
    • 33
    • 46
  • I. G. Park
    • 33
  • A. Pastore
    • 24
    • 36
  • L. Patrizii
    • 16
  • E. Pennacchio
    • 9
  • H. Pessard
    • 14
  • C. Pistillo
    • 8
  • N. Polukhina
    • 18
  • M. Pozzato
    • 15
    • 16
  • K. Pretzl
    • 8
  • F. Pupilli
    • 22
  • R. Rescigno
    • 12
  • F. Riguzzi
    • 38
  • T. Roganova
    • 6
  • H. Rokujo
    • 7
  • G. Rosa
    • 30
    • 39
  • I. Rostovtseva
    • 26
  • A. Rubbia
    • 10
  • A. Russo
    • 3
  • V. Ryasny
    • 2
  • O. Ryazhskaya
    • 2
  • O. Sato
    • 31
  • Y. Sato
    • 40
  • Z. Sahnoun
    • 16
    • 47
  • A. Schembri
    • 22
  • J. Schuler
    • 1
  • L. Scotto Lavina
    • 8
    • 48
  • J. Serrano
    • 5
  • I. Shakiryanova
    • 2
  • A. Sheshukov
    • 20
  • H. Shibuya
    • 27
  • G. Shoziyoev
    • 6
  • S. Simone
    • 24
    • 36
  • M. Sioli
    • 15
    • 16
  • C. Sirignano
    • 11
    • 13
  • G. Sirri
    • 16
  • J. S. Song
    • 33
  • M. Spinetti
    • 19
  • L. Stanco
    • 11
  • N. Starkov
    • 18
  • S. Stellacci
    • 12
  • M. Stipcevic
    • 32
  • T. Strauss
    • 8
  • S. Takahashi
    • 7
  • M. Tenti
    • 9
    • 15
    • 16
  • F. Terranova
    • 19
    • 41
  • I. Tezuka
    • 40
  • V. Tioukov
    • 3
  • P. Tolun
    • 4
  • N. T. Trani
    • 9
  • S. Tufanli
    • 8
  • P. Vilain
    • 42
  • M. Vladimirov
    • 18
  • L. Votano
    • 19
  • J.-L. Vuilleumier
    • 8
  • G. Wilquet
    • 42
  • B. Wonsak
    • 25
  • J. Wurtz
    • 1
  • V. Yakushev
    • 2
  • C. S. Yoon
    • 33
  • J. Yoshida
    • 31
  • Y. Zaitsev
    • 26
  • S. Zemskova
    • 20
  • A. Zghiche
    • 14
  1. 1.IPHC, Université de Strasbourg, CNRS/IN2P3StrasbourgFrance
  2. 2.INR-Institute for Nuclear Research of the Russian Academy of SciencesMoscowRussia
  3. 3.INFN Sezione di NapoliNapoliItaly
  4. 4.METU-Middle East Technical UniversityAnkaraTurkey
  5. 5.European Organization for Nuclear Research (CERN)GenevaSwitzerland
  6. 6.(MSU SINP) Lomonosov Moscow State University Skobeltsyn Institute of Nuclear PhysicsMoscowRussia
  7. 7.Kobe UniversityKobeJapan
  8. 8.Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP)University of BernBernSwitzerland
  9. 9.IPNL, Université Claude Bernard Lyon I, CNRS/IN2P3VilleurbanneFrance
  10. 10.ETH ZurichInstitute for Particle PhysicsZurichSwitzerland
  11. 11.INFN Sezione di PadovaPadovaItaly
  12. 12.Dipartimento di Fisica dell’Università di Salerno and INFN “Gruppo Collegato di Salerno”FiscianoItaly
  13. 13.Dipartimento di Fisica dell’Università di PadovaPadovaItaly
  14. 14.LAPP, Université de Savoie, CNRS/IN2P3Annecy-le-VieuxFrance
  15. 15.Dipartimento di Fisica dell’Università di BolognaBolognaItaly
  16. 16.INFN Sezione di BolognaBolognaItaly
  17. 17.Dipartimento di Fisica dell’Università dell’Aquila and INFN “Gruppo Collegato de L’Aquila”L’AquilaItaly
  18. 18.LPI-Lebedev Physical Institute of the Russian Academy of ScienceMoscowRussia
  19. 19.INFN — Laboratori Nazionali di FrascatiFrascati (Roma)Italy
  20. 20.JINR-Joint Institute for Nuclear ResearchDubnaRussia
  21. 21.Area di Geodesia e Geomatica, Dipartimento di Ingegneria Civile Edile e Ambientale dell’Università di Roma SapienzaRomaItaly
  22. 22.INFN — Laboratori Nazionali del Gran SassoAssergi (L’Aquila)Italy
  23. 23.Dipartimento di Scienze Fisiche dell’Università Federico II di NapoliNapoliItaly
  24. 24.INFN Sezione di BariBariItaly
  25. 25.Hamburg UniversityHamburgGermany
  26. 26.ITEP-Institute for Theoretical and Experimental PhysicsMoscowRussia
  27. 27.Toho UniversityFunabashiJapan
  28. 28.Department of Physics, TechnionHaifaIsrael
  29. 29.Università degli Studi di Urbino “Carlo Bo”UrbinoItaly
  30. 30.INFN Sezione di RomaRomaItaly
  31. 31.Nagoya UniversityNagoyaJapan
  32. 32.IRB-Rudjer Boskovic InstituteZagrebCroatia
  33. 33.Gyeongsang National University, ROK-900 Gazwa-dongJinjuKorea
  34. 34.Crete Center for Theoretical Physics, Department of PhysicsUniversity of CreteHeraklionGreece
  35. 35.Aichi University of EducationKariya (Aichi-Ken)Japan
  36. 36.Dipartimento di Fisica dell’Università di BariBariItaly
  37. 37.Theory Division APC, Université Paris 7, Bâtiment CondorcetParis Cedex 13France
  38. 38.Istituto Nazionale di Geofisica e Vulcanologia, Sez. CNTRomaItaly
  39. 39.Dipartimento di Fisica dell’Università di Roma SapienzaRomaItaly
  40. 40.Utsunomiya UniversityUtsunomiyaJapan
  41. 41.Dipartimento di Fisica dell’ Università di Milano-BicoccaMilanoItaly
  42. 42.IIHEUniversité Libre de BruxellesBrusselsBelgium
  43. 43.Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP)University of BernBernSwitzerland
  44. 44.INAF/IASF, Sezione di MilanoMilanoItaly
  45. 45.Pusan National UniversityBusanRepublic of Korea
  46. 46.Asan Medical CenterSeoulRepublic of Korea
  47. 47.Centre de Recherche en Astronomie Astrophysique et GéophysiqueAlgerAlgeria
  48. 48.SUBATECH, CNRS/IN2P3NantesFrance

Personalised recommendations