BMS/GCA redux: towards flatspace holography from non-relativistic symmetries

  • Arjun BagchiEmail author
  • Reza Fareghbal


The asymptotic group of symmetries at null infinity of flat spacetimes in three and four dimensions is the infinite dimensional Bondi-Metzner-Sachs (BMS) group. This has recently been shown to be isomorphic to non-relativistic conformal algebras in one lower dimension, the Galilean Conformal Algebra (GCA) in 2d and a closely related non-relativistic algebra in 3d [1, 2]. We provide a better understanding of this surprising connection by providing a spacetime interpretation in terms of a novel contraction. The 2d GCA was previously obtained from a linear combination of two copies of the Virasoro algebra. We consider a representation obtained from a different linear combination of the Virasoros, which is relevant to the relation with the BMS algebra in three dimensions. This is realised by a new space-time contraction of the parent algebra. We show that this representation has interesting correlation functions. We discuss implications for the BMS/GCA correspondence and show that the flat space limit actually induces precisely this contraction on the boundary conformal field theory. We also discuss aspects of asymptotic symmetries and the consequences of this contraction in higher dimensions.


Gauge-gravity correspondence Conformal and W Symmetry 


  1. [1]
    A. Bagchi, Correspondence between Asymptotically Flat Spacetimes and Nonrelativistic Conformal Field Theories, Phys. Rev. Lett. 105 (2010) 171601 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  2. [2]
    A. Bagchi, The BMS/GCA correspondence, arXiv:1006.3354 [INSPIRE].
  3. [3]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113 ] [hep-th/9711200] [INSPIRE].MathSciNetADSzbMATHGoogle Scholar
  4. [4]
    L. Susskind, Holography in the flat space limit, hep-th/9901079 [INSPIRE].
  5. [5]
    H. Bondi, M. van der Burg and A. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].ADSGoogle Scholar
  6. [6]
    R. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128 (1962) 2851 [INSPIRE].MathSciNetCrossRefADSzbMATHGoogle Scholar
  8. [8]
    A. Bagchi and R. Gopakumar, Galilean Conformal Algebras and AdS/CFT, JHEP 07 (2009) 037 [arXiv:0902.1385] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    A. Bagchi and I. Mandal, On Representations and Correlation Functions of Galilean Conformal Algebras, Phys. Lett. B 675 (2009) 393 [arXiv:0903.4524] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    A. Bagchi, R. Gopakumar, I. Mandal and A. Miwa, GCA in 2d, JHEP 08 (2010) 004 [arXiv:0912.1090] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  12. [12]
    S.A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324 [INSPIRE].
  13. [13]
    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].Google Scholar
  14. [14]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  15. [15]
    D. Son, Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    V.N. Gusyatnikova and V.A. Yumaguzhin, Symmetries and conservation laws of navier-stokes equations, Acta App. Math. 15 (1989) 65.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    C. Duval and P.A. Horvathy, Non-relativistic conformal symmetries and Newton-Cartan structures, J. Phys. A 42 (2009) 465206 [arXiv:0904.0531] [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    M. Alishahiha, A. Davody and A. Vahedi, On AdS/CFT of Galilean Conformal Field Theories, JHEP 08 (2009) 022 [arXiv:0903.3953] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  20. [20]
    D. Martelli and Y. Tachikawa, Comments on Galilean conformal field theories and their geometric realization, JHEP 05 (2010) 091 [arXiv:0903.5184] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  21. [21]
    A. Bagchi and I. Mandal, Supersymmetric Extension of Galilean Conformal Algebras, Phys. Rev. D 80 (2009) 086011 [arXiv:0905.0580] [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    J. de Azcarraga and J. Lukierski, Galilean Superconformal Symmetries, Phys. Lett. B 678 (2009) 411 [arXiv:0905.0141] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Sakaguchi, Super Galilean conformal algebra in AdS/CFT, J. Math. Phys. 51 (2010) 042301 [arXiv:0905.0188] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  24. [24]
    A. Mukhopadhyay, A Covariant Form of the Navier-Stokes Equation for the Galilean Conformal Algebra, JHEP 01 (2010) 100 [arXiv:0908.0797] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    A. Hosseiny and S. Rouhani, Affine Extension of Galilean Conformal Algebra in 2 + 1 Dimensions, J. Math. Phys. 51 (2010) 052307 [arXiv:0909.1203] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  26. [26]
    K. Hotta, T. Kubota and T. Nishinaka, Galilean Conformal Algebra in Two Dimensions and Cosmological Topologically Massive Gravity, Nucl. Phys. B 838 (2010) 358 [arXiv:1003.1203] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  27. [27]
    A. Bagchi and A. Kundu, Metrics with Galilean Conformal Isometry, Phys. Rev. D 83 (2011) 066018 [arXiv:1011.4999] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A. Bagchi, Topologically Massive Gravity and Galilean Conformal Algebra: A Study of Correlation Functions, JHEP 02 (2011) 091 [arXiv:1012.3316] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  29. [29]
    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].MathSciNetCrossRefADSzbMATHGoogle Scholar
  30. [30]
    G. Barnich and G. Compere, Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions, Class. Quant. Grav. 24 (2007) F15 [Erratum ibid. 24 (2007)3139] [gr-qc/0610130] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    G. Barnich and C. Troessaert, Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett. 105 (2010) 111103 [arXiv:0909.2617] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  32. [32]
    G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP 05 (2010) 062 [arXiv:1001.1541] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  33. [33]
    G. Barnich and C. Troessaert, Supertranslations call for superrotations, PoS(CNCFG2010)010 [arXiv:1102.4632] [INSPIRE].
  34. [34]
    G. Barnich and C. Troessaert, BMS charge algebra, JHEP 12 (2011) 105 [arXiv:1106.0213] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  35. [35]
    G. Barnich and P.-H. Lambert, A Note on the Newman-Unti group, arXiv:1102.0589 [INSPIRE].
  36. [36]
    G. Barnich, A Note on gauge systems from the point of view of Lie algebroids, AIP Conf. Proc. 1307 (2010) 7 [arXiv:1010.0899] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  37. [37]
    G. Barnich, A. Gomberoff and A. Gonzalez, The flat limit of three dimensional asymptotically anti-de Sitter spacetimes, to appear.Google Scholar
  38. [38]
    A. Ashtekar and R. Hansen, A unified treatment of null and spatial infinity in general relativity I - Universal structure, asymptotic symmetries and conserved quantities at spatial infinity, J. Math. Phys. 19 (1978) 1542 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  39. [39]
    G. Arcioni and C. Dappiaggi, Exploring the holographic principle in asymptotically flat space-times via the BMS group, Nucl. Phys. B 674 (2003) 553 [hep-th/0306142] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  40. [40]
    G. Arcioni and C. Dappiaggi, Holography in asymptotically flat space-times and the BMS group, Class. Quant. Grav. 21 (2004) 5655 [hep-th/0312186] [INSPIRE].MathSciNetCrossRefADSzbMATHGoogle Scholar
  41. [41]
    C. Dappiaggi, V. Moretti and N. Pinamonti, Rigorous steps towards holography in asymptotically flat spacetimes, Rev. Math. Phys. 18 (2006) 349 [gr-qc/0506069] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    E. Witten, (2 + 1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys. B 311 (1988) 46 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  43. [43]
    S. Hollands and A. Ishibashi, Asymptotic flatness and Bondi energy in higher dimensional gravity, J. Math. Phys. 46 (2005) 022503 [gr-qc/0304054] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  44. [44]
    K. Tanabe, N. Tanahashi and T. Shiromizu, On asymptotic structure at null infinity in five dimensions, J. Math. Phys. 51 (2010) 062502 [arXiv:0909.0426] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  45. [45]
    W. Li and T. Takayanagi, Holography and Entanglement in Flat Spacetime, Phys. Rev. Lett. 106 (2011) 141301 [arXiv:1010.3700] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    S.N. Solodukhin, Correlation functions of boundary field theory from bulk Greens functions and phases in the boundary theory, Nucl. Phys. B 539 (1999) 403 [hep-th/9806004] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  47. [47]
    K. Gawedzki, Turbulence under a magnifying glass, chao-dyn/9610003.
  48. [48]
    A. Bagchi, The Non-Relativistic Limit of the AdS/CFT Correspondence, Ph.D. Thesis, unpublished [].Google Scholar
  49. [49]
    I. Bredberg, C. Keeler, V. Lysov and A. Strominger, From Navier-Stokes To Einstein, JHEP 07 (2012) 146 [arXiv:1101.2451] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  50. [50]
    G. Compere, P. McFadden, K. Skenderis and M. Taylor, The Holographic fluid dual to vacuum Einstein gravity, JHEP 07 (2011) 050 [arXiv:1103.3022] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  51. [51]
    S.B. Giddings, Flat space scattering and bulk locality in the AdS/CFT correspondence, Phys. Rev. D 61 (2000) 106008 [hep-th/9907129] [INSPIRE].MathSciNetADSGoogle Scholar
  52. [52]
    M. Gary and S.B. Giddings, The Flat space S-matrix from the AdS/CFT correspondence?, Phys. Rev. D 80 (2009) 046008 [arXiv:0904.3544] [INSPIRE].MathSciNetADSGoogle Scholar
  53. [53]
    J. de Boer, M. Sheikh-Jabbari and J. Simon, Near Horizon Limits of Massless BTZ and Their CFT Duals, Class. Quant. Grav. 28 (2011) 175012 [arXiv:1011.1897] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.School of MathematicsUniversity of EdinburghEdinburghUnited Kingdom
  2. 2.School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations