On topologically massive spin-2 gauge theories beyond three dimensions

  • Eric A. Bergshoeff
  • Marija Kovacevic
  • Jan Rosseel
  • Yihao Yin
Article

Abstract

We investigate in which sense, at the linearized level, one can extend the 3D topologically massive gravity theory beyond three dimensions. We show that, for each k=1,2,3,⋯ afreetopologicallymassivegaugetheoryin4k−1dimensionscanbedefined describing a massive “spin-2” particle provided one uses a non-standard representation of the massive “spin-2” state which makes use of a two-column Young tableau where each column is of height 2k − 1. We work out the case of k = 2, i.e. 7D, and show, by canonical analysis, that the model describes, unitarily, 35 massive “spin-2” degrees of freedom. The issue of interactions is discussed and compared with the three-dimensional situation.

Keywords

Gauge Symmetry Classical Theories of Gravity 

References

  1. [1]
    S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [Annals Phys. 281 (2000) 409] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive gravity in three dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    E.A. Bergshoeff, J.J. Fernandez-Melgarejo, J. Rosseel and P.K. Townsend, Onnew massive4D gravity, JHEP 04 (2012) 070 [arXiv:1202.1501] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    W. Siegel, Unextended superfields in extended supersymmetry, Nucl. Phys. B 156 (1979) 135 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J.F. Schonfeld, A mass term for three-dimensional gauge fields, Nucl. Phys. B 185 (1981) 157 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S. Deser, R. Jackiw and S. Templeton, Three-dimensional massive gauge theories, Phys. Rev. Lett. 48 (1982) 975 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace or one thousand and one lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].Google Scholar
  8. [8]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, On higher derivatives in 3D gravity and higher spin gauge theories, Annals Phys. 325 (2010) 1118 [arXiv:0911.3061] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  9. [9]
    P.K. Townsend, K. Pilch and P. van Nieuwenhuizen, Selfduality in odd dimensions, Phys. Lett. B 136 (1984) 38 [Addendum ibid. B 137 (1984) 443] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S. Deser and R. Jackiw, ‘Selfdualityof topologically massive gauge theories, Phys. Lett. B 139 (1984) 371 [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    E.A. Bergshoeff, M. Kovacevic, J. Rosseel, P.K. Townsend and Y. Yin, A spin-4 analog of 3D massive gravity, Class. Quant. Grav. 28 (2011) 245007 [arXiv:1109.0382] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    T. Curtright, Generalized gauge fields, Phys. Lett. B 165 (1985) 304 [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    J.M.F. Labastida, Massless particles in arbitrary representations of the Lorentz group, Nucl. Phys. B 322 (1989) 185 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    X. Bekaert and N. Boulanger, Tensor gauge fields in arbitrary representations of GL(D,R): duality and Poincaré lemma, Commun. Math. Phys. 245 (2004) 27 [hep-th/0208058] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  15. [15]
    H. Lü and Y. Pang, Seven-dimensional gravity with topological terms, Phys. Rev. D 81 (2010) 085016 [arXiv:1001.0042] [INSPIRE].ADSGoogle Scholar
  16. [16]
    W. Fulton, Young tableaux, with applications to representation theory and geometry, Cambridge University Press, Cambridge U.K. (1997) [ISBN 978-0521567244].MATHGoogle Scholar
  17. [17]
    M. Hamermesh, Group theory and its application to physical problems, Dover Publications (1989) [ISBN 978-0486661810].Google Scholar
  18. [18]
    D. Francia and C.M. Hull, Higher-spin gauge fields and duality, hep-th/0501236 [INSPIRE].
  19. [19]
    S. Deser, Ghost-free, finite, fourth order D = 3 (alas) gravity, Phys. Rev. Lett. 103 (2009) 101302 [arXiv:0904.4473] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    A. Achúcarro and P.K. Townsend, A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].ADSGoogle Scholar
  21. [21]
    E. Witten, (2+1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B 311 (1988) 46 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    E.D. Skvortsov, Frame-like actions for massless mixed-symmetry fields in Minkowski space, Nucl. Phys. B 808 (2009) 569 [arXiv:0807.0903] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    K. Peeters, A field-theory motivated approach to symbolic computer algebra, Comput. Phys. Commun. 176 (2007) 550 [cs/0608005] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  24. [24]
    K. Peeters, Introducing Cadabra: a symbolic computer algebra system for field theory problems, hep-th/0701238 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Eric A. Bergshoeff
    • 1
  • Marija Kovacevic
    • 1
  • Jan Rosseel
    • 1
  • Yihao Yin
    • 1
  1. 1.Centre for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands

Personalised recommendations