Measurement of b-hadron branching fractions for two-body decays into charmless charged hadrons


Based on data corresponding to an integrated luminosity of 0.37 fb−1 collected by the LHCb experiment in 2011, the following ratios of branching fractions are measured:

$ \begin{array}{*{20}{c}} {{{{\mathcal{B}\left( {B^0 \to {\pi^{+}}{\pi^{-}}} \right)}} \left/ {{\mathcal{B}\left( {B^0 \to {K^{+}}{\pi^{-}}} \right)}} \right.}=0.262\pm 0.009\pm 0.017,} \\ {\left( {{f_s \left/ {f_d } \right.}} \right)\cdot {{{\mathcal{B}\left( {B_s^0\to {K^{+}}{K^{-}}} \right)}} \left/ {{\mathcal{B}\left( {B^0 \to {K^{+}}{\pi^{-}}} \right)}} \right.}=0.316\pm 0.009\pm 0.019,} \\ {\left( {{f_s \left/ {f_d } \right.}} \right)\cdot {{{\mathcal{B}\left( {B_s^0\to {\pi^{+}}{K^{-}}} \right)}} \left/ {{\mathcal{B}\left( {B^0 \to {K^{+}}{\pi^{-}}} \right)}} \right.}=0.074\pm 0.006\pm 0.006,} \\ {\left( {{f_d \left/ {f_s } \right.}} \right)\cdot {{{\mathcal{B}\left( {B^0 \to {K^{+}}{K^{-}}} \right)}} \left/ {{\mathcal{B}\left( {B_s^0\to {K^{+}}{K^{-}}} \right)}} \right.}=0.018_{-0.007}^{+0.008}\pm 0.009,} \\ {\left( {{f_s \left/ {f_d } \right.}} \right)\cdot {{{\mathcal{B}\left( {B_s^0\to {\pi^{+}}{\pi^{-}}} \right)}} \left/ {{\mathcal{B}\left( {B^0 \to {\pi^{+}}{\pi^{-}}} \right)}} \right.}=0.050_{-0.009}^{+0.011}\pm 0.004,} \\ {{{{\mathcal{B}\left( {\Lambda_b^0\to p{\pi^{-}}} \right)}} \left/ {{\mathcal{B}\left( {\Lambda_b^0\to p{K^{-}}} \right)}} \right.}=0.86\pm 0.08\pm 0.05,} \\ \end{array} $

where the first uncertainties are statistical and the second systematic. Using the current world average of \( \mathcal{B}\left( {B^0 \to {K^{+}}{\pi^{-}}} \right) \) and the ratio of the strange to light neutral B meson production f s /f d measured by LHCb, we obtain:

$ \begin{array}{*{20}{c}} {\mathcal{B}\left( {B^0 \to {\pi^{+}}{\pi^{-}}} \right)=\left( {5.08\pm 0.17\pm 0.37} \right)\times {10^{-6 }},} \\ {\mathcal{B}\left( {B_s^0\to {K^{+}}{K^{-}}} \right)=\left( {23.0\pm 0.7\pm 2.3} \right)\times {10^{-6 }},} \\ {\mathcal{B}\left( {B_s^0\to {\pi^{+}}{K^{-}}} \right)=\left( {5.4\pm 0.4\pm 0.6} \right)\times {10^{-6 }},} \\ {\mathcal{B}\left( {B^0 \to {K^{+}}{K^{-}}} \right)=\left( {0.11_{-0.04}^{+0.05}\pm 0.06} \right)\times {10^{-6 }},} \\ {\mathcal{B}\left( {B_s^0\to {\pi^{+}}{\pi^{-}}} \right)=\left( {0.95_{-0.17}^{+0.21}\pm 0.13} \right)\times {10^{-6 }}.} \\ \end{array} $

The measurements of \( \mathcal{B}\left( {B_s^0\to {K^{+}}{K^{-}}} \right) \), \( \mathcal{B}\left( {B_s^0\to {\pi^{+}}{K^{-}}} \right) \) and \( \mathcal{B}\left( {B^0 \to {K^{+}}{K^{-}}} \right) \) are the most precise to date. The decay mode \( B_s^0\to {\pi^{+}}{\pi^{-}} \) is observed for the first time with a significance of more than 5σ.


  1. [1]

    N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    R. Fleischer, New strategies to extract β and γ from B d → π+π and B s K + K , Phys. Lett. B 459 (1999) 306 [hep-ph/9903456] [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    M. Gronau and J.L. Rosner, The role of B s Kπ in determining the weak phase γ, Phys. Lett. B 482 (2000) 71 [hep-ph/0003119] [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    H.J. Lipkin, Is observed direct CP-violation in B d K + π due to new physics? Check standard model prediction of equal violation in B s K π +, Phys. Lett. B 621 (2005) 126 [hep-ph/0503022] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    R. Fleischer, B s,d ππ, πK, KK: status and prospects, Eur. Phys. J. C 52 (2007) 267 [arXiv:0705.1121] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    R. Fleischer and R. Knegjens, In pursuit of new physics with \( B_s^0\to {K^{+}}{K^{-}} \), Eur. Phys. J. C 71 (2011) 1532 [arXiv:1011.1096] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    BABAR collaboration, B. Aubert et al., Measurement of CP asymmetries and branching fractions in B 0 → → π + π , B 0K + π , B 0π 0 π 0 , B 0K 0 π 0 and isospin analysis of Bππ decays, arXiv:0807.4226 [INSPIRE].

  9. [9]

    Belle collaboration, S. Lin et al., Difference in direct charge-parity violation between charged and neutral B meson decays, Nature 452 (2008) 332 [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    CDF collaboration, T. Aaltonen et al., Measurements of direct CP-violating asymmetries in charmless decays of strange bottom mesons and bottom baryons, Phys. Rev. Lett. 106 (2011) 181802 [arXiv:1103.5762] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    LHCb collaboration, R. Aaij et al., First evidence of direct CP-violation in charmless two-body decays of \( B_s^0 \) mesons, Phys. Rev. Lett. 108 (2012) 201601 [arXiv:1202.6251] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    CDF collaboration, T. Aaltonen et al., Evidence for the charmless annihilation decay mode \( B_s^0\to {\pi^{+}}{\pi^{-}} \), Phys. Rev. Lett. 108 (2012) 211803 [arXiv:1111.0485] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    LHCb collaboration, J. Alves, A. Augusto et al., The LHCb detector at the LHC, 2008 JINST 3 S08005 [INSPIRE].

    Google Scholar 

  14. [14]

    V. Gligorov, C. Thomas and M. Williams, The HLT inclusive B triggers, LHCb-PUB-2011-016 (2011).

    Google Scholar 

  15. [15]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    I. Belyaev et al., Handling of the generation of primary events in Gauss , the LHCb simulation framework, Nucl. Sci. Symp. Conf. Rec. (2010) 1155.

  17. [17]

    D. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    GEANT4 collaboration, J. Allison et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270.

    ADS  Article  Google Scholar 

  20. [20]

    GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    M. Clemencic et al., The LHCb simulation application, Gauss: design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023.

    ADS  Article  Google Scholar 

  22. [22]

    M. Pivk and F.R. Le Diberder, SPlot: a statistical tool to unfold data distributions, Nucl. Instrum. Meth. A 555 (2005) 356 [physics/0402083] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    ARGUS collaboration, H. Albrecht et al., Search for bsγ in exclusive decays of B mesons, Phys. Lett. B 229 (1989) 304 [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ-lepton properties, arXiv:1010.1589, updates available online at [INSPIRE].

  25. [25]

    E. Baracchini and G. Isidori, Electromagnetic corrections to non-leptonic two-body B and D decays, Phys. Lett. B 633 (2006) 309 [hep-ph/0508071] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    LHCb collaboration, R. Aaij et al., Measurement of b hadron production fractions in 7 TeV pp collisions, Phys. Rev. D 85 (2012) 032008 [arXiv:1111.2357] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    H.-n. Li, S. Mishima and A. Sanda, Resolution to the BπK puzzle, Phys. Rev. D 72 (2005) 114005 [hep-ph/0508041] [INSPIRE].

    ADS  Google Scholar 

  28. [28]

    C.-D. Lu, Y.-L. Shen and W. Wang, Final state interaction in BKK decays, Phys. Rev. D 73 (2006) 034005 [hep-ph/0511255] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    S. Descotes-Genon, J. Matias and J. Virto, Exploring B d,s KK decays through flavour symmetries and QCD-factorisation, Phys. Rev. Lett. 97 (2006) 061801 [hep-ph/0603239] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    H.-Y. Cheng and C.-K. Chua, Revisiting charmless hadronic B u,d decays in QCD factorization, Phys. Rev. D 80 (2009) 114008 [arXiv:0909.5229] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    A.R. Williamson and J. Zupan, Two body B decays with isosinglet final states in SCET, Phys. Rev. D 74 (2006) 014003 [Erratum ibid. D 74 (2006) 03901] [hep-ph/0601214] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    A. Ali, G. Kramer, Y. Li, C.-D. Lu, Y.-L. Shen, et al., Charmless non-leptonic B s decays to PP, PV and VV final states in the pQCD approach, Phys. Rev. D 76 (2007) 074018 [hep-ph/0703162] [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    J. Liu, R. Zhou and Z.-J. Xiao, B s PP decays and the NLO contributions in the pQCD Approach, arXiv:0812.2312 [INSPIRE].

  34. [34]

    H.-Y. Cheng and C.-K. Chua, QCD Factorization for charmless hadronic B s decays revisited, Phys. Rev. D 80 (2009) 114026 [arXiv:0910.5237] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    R. Mohanta, A. Giri and M. Khanna, Charmless two-body hadronic decays of Λ b baryon, Phys. Rev. D 63 (2001) 074001 [hep-ph/0006109] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    H. Kaur and M. Khanna, Charmless weak decays of Λ b baryon, Int. J. Mod. Phys. A 21 (2006) 121 [INSPIRE].

    ADS  Google Scholar 

  37. [37]

    C.D. Lü, Y.M. Wang, H. Zou, A. Ali and G. Kramer, Anatomy of the pQCD approach to the baryonic decays Λ b pπ, pK, Phys. Rev. D 80 (2009) 034011 [arXiv:0906.1479] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information