Advertisement

NLO corrections merged with parton showers for Z + 2 jets production using the POWHEG method

  • Emanuele Re
Article

Abstract

We present results for the QCD production of Z/γ + 2 jets matched with parton showers using the POWHEG method. Some technicalities relevant for the merging of NLO corrections for this process with parton showers are discussed, and results for typical distributions are shown, in presence of different sets of cuts. A comparison with ATLAS data is also presented, and good agreement is found.

Keywords

QCD Phenomenology NLO Computations 

References

  1. [1]
    Z. Bern et al., Driving missing data at next-to-leading order, Phys.Rev. D 84 (2011) 114002 [arXiv:1106.1423] [INSPIRE].ADSGoogle Scholar
  2. [2]
    D.L. Rainwater, D. Zeppenfeld and K. Hagiwara, Searching for Hτ + τ in weak boson fusion at the CERN LHC, Phys. Rev. D 59 (1998) 014037 [hep-ph/9808468] [INSPIRE].ADSGoogle Scholar
  3. [3]
    T. Plehn, D.L. Rainwater and D. Zeppenfeld, A method for identifying Hτ + τ →e ± μ p T at the CERN LHC, Phys. Rev. D 61(2000) 093005 [hep-ph/9911385] [INSPIRE].ADSGoogle Scholar
  4. [4]
    J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W + 2 jet and Z + 2 jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [INSPIRE].ADSGoogle Scholar
  5. [5]
    J.M. Campbell, R.K. Ellis and D.L. Rainwater, Next-to-leading order QCD predictions for W +2 jet and Z+2 jet production at the CERN LHC, Phys. Rev. D 68 (2003) 094021 [hep-ph/0308195] [INSPIRE].ADSGoogle Scholar
  6. [6]
    C. Oleari and D. Zeppenfeld, QCD corrections to electroweak ν()jj and ℓ + jj production, Phys. Rev. D 69 (2004) 093004 [hep-ph/0310156] [INSPIRE].ADSGoogle Scholar
  7. [7]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavor production, JHEP 08 (2003) 007 [hep-ph/0305252] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Alioli, P. Nason, C. Oleari and E. Re, Vector boson plus one jet production in POWHEG, JHEP 01 (2011) 095 [arXiv:1009.5594] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Alioli, K. Hamilton, P. Nason, C. Oleari and E. Re, Jet pair production in POWHEG, JHEP 04 (2011) 081 [arXiv:1012.3380] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Kardos, C. Papadopoulos and Z. Trócsányi, Top quark pair production in association with a jet with NLO parton showering, Phys. Lett. B 705 (2011) 76 [arXiv:1101.2672] [INSPIRE].ADSGoogle Scholar
  14. [14]
    S. Alioli, S.-O. Moch and P. Uwer, Hadronic top-quark pair-production with one jet and parton showering, JHEP 01 (2012) 137 [arXiv:1110.5251] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    L. D’Errico and P. Richardson, Next-to-leading-order Monte Carlo simulation of diphoton production in hadronic collisions, JHEP 02 (2012) 130 [arXiv:1106.3939] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, A critical appraisal of NLO + PS matching methods, JHEP 09 (2012) 049 [arXiv:1111.1220] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R. Frederix et al., aMC@NLO predictions for Wjj production at the Tevatron, JHEP 02 (2012) 048 [arXiv:1110.5502] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, W + n-jet predictions with MC@NLO in Sherpa, arXiv:1201.5882 [INSPIRE].
  19. [19]
    J.M. Campbell et al., NLO Higgs boson production plus one and two jets using the POWHEG BOX, MadGraph4 and MCFM, JHEP 07 (2012) 092 [arXiv:1202.5475] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    K. Hagiwara and D. Zeppenfeld, Helicity amplitudes for heavy lepton production in e + e annihilation, Nucl. Phys. B 274 (1986) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    K. Hagiwara and D. Zeppenfeld, Amplitudes for multiparton processes involving a current at e + e , e ± p and hadron colliders, Nucl. Phys. B 313 (1989) 560 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    Z. Bern, L.J. Dixon and D.A. Kosower, One loop amplitudes for e + e to four partons, Nucl. Phys. B 513 (1998) 3 [hep-ph/9708239] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    C. Berger et al., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [INSPIRE].ADSGoogle Scholar
  26. [26]
    T. Binoth et al., A proposal for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun. 181 (2010) 1612 [arXiv:1001.1307] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  27. [27]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: a matrix element generator in C++, JHEP 02 (2002) 044 [hep-ph/0109036] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    D.L. Rainwater, R. Szalapski and D. Zeppenfeld, Probing color singlet exchange in Z + two jet events at the CERN LHC, Phys. Rev. D 54 (1996) 6680 [hep-ph/9605444] [INSPIRE].ADSGoogle Scholar
  34. [34]
    P. Nason and C. Oleari, NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG, JHEP 02 (2010) 037 [arXiv:0911.5299] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    T. Plehn, D.L. Rainwater and D. Zeppenfeld, Determining the structure of Higgs couplings at the LHC, Phys. Rev. Lett. 88 (2002) 051801 [hep-ph/0105325] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    ATLAS collaboration, G. Aad et al., Measurement of the production cross section for Z/γ * in association with jets in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 85 (2012) 032009 [arXiv:1111.2690] [INSPIRE].ADSGoogle Scholar
  37. [37]
    L. D’Errico and P. Richardson, A positive-weight next-to-leading-order Monte Carlo simulation of deep inelastic scattering and Higgs boson production via vector boson fusion in HERWIG++, arXiv:1106.2983 [INSPIRE].
  38. [38]
    S. Frixione, P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP 09 (2007) 126 [arXiv:0707.3088] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Alioli, K. Hamilton and E. Re, Practical improvements and merging of POWHEG simulations for vector boson production, JHEP 09 (2011) 104 [arXiv:1108.0909] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Institute for Particle Physics Phenomenology, Department of PhysicsUniversity of DurhamDurhamU.K.

Personalised recommendations