Advertisement

Exact results on the ABJM Fermi gas

  • Yasuyuki Hatsuda
  • Sanefumi MoriyamaEmail author
  • Kazumi Okuyama
Article

Abstract

We study the Fermi gas quantum mechanics associated to the ABJM matrix model. We develop a method to compute the grand partition function of the ABJM theory, and compute exactly the partition function Z(N) up to N = 9 with the Chern-Simons level k = 1. We find that the eigenvalue problem of this quantum mechanical system is reduced to the diagonalization of a certain Hankel matrix. In reducing the number of integrations by commuting coordinates and momenta, we find an exact relation concerning the grand partition function, which is interesting on its own right and very helpful for determining the partition function. We also study the TBA-type integral equations that allow us to compute the grand partition function numerically. Surprisingly, all of our exact partition functions are written in terms of polynomials of π −1 with rational coefficients.

Keywords

Matrix Models Chern-Simons Theories M-Theory 

References

  1. [1]
    I.R. Klebanov and A.A. Tseytlin, Entropy of near extremal black p-branes, Nucl. Phys. B 475 (1996) 164 [hep-th/9604089] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    M.K. Benna, I.R. Klebanov and T. Klose, Charges of Monopole Operators in Chern-Simons Yang-Mills Theory, JHEP 01 (2010) 110 [arXiv:0906.3008] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    A. Gustavsson and S.-J. Rey, Enhanced N = 8 Supersymmetry of ABJM Theory on R 8 and R 8 /Z 2, arXiv:0906.3568 [INSPIRE].
  6. [6]
    O.-K. Kwon, P. Oh and J. Sohn, Notes on Supersymmetry Enhancement of ABJM Theory, JHEP 08 (2009) 093 [arXiv:0906.4333] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    D. Bashkirov and A. Kapustin, Supersymmetry enhancement by monopole operators, JHEP 05 (2011) 015 [arXiv:1007.4861] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. [10]
    N. Halmagyi and V. Yasnov, The Spectral curve of the lens space matrix model, JHEP 11 (2009) 104 [hep-th/0311117] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  12. [12]
    O. Bergman and S. Hirano, Anomalous radius shift in AdS 4 /CFT 3, JHEP 07 (2009) 016 [arXiv:0902.1743] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311 [hep-th/9309140] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. [14]
    N. Drukker, M. Mariño and P. Putrov, Nonperturbative aspects of ABJM theory, JHEP 11 (2011) 141 [arXiv:1103.4844] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    H. Fuji, S. Hirano and S. Moriyama, Summing Up All Genus Free Energy of ABJM Matrix Model, JHEP 08 (2011) 001 [arXiv:1106.4631] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    H. Ooguri, C. Vafa and E.P. Verlinde, Hartle-Hawking wave-function for flux compactifications, Lett. Math. Phys. 74 (2005) 311 [hep-th/0502211] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. [17]
    M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech. 1203 (2012) P03001 [arXiv:1110.4066] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    M. Mariño and P. Putrov, Interacting fermions and N = 2 Chern-Simons-matter theories, arXiv:1206.6346 [INSPIRE].
  19. [19]
    A. Klemm, M. Mariño, M. Schiereck and M. Soroush, ABJM Wilson loops in the Fermi gas approach, arXiv:1207.0611 [INSPIRE].
  20. [20]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    S. Ruijsenaars and H. Schneider, A New Class Of Integrable Systems And Its Relation To Solitons, Annals Phys. 170 (1986) 370 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. [22]
    S. Odake and R. Sasaki, Discrete Quantum Mechanics, J. Phys. A 44 (2011) 353001 [arXiv:1104.0473] [INSPIRE].MathSciNetGoogle Scholar
  23. [23]
    K. Okuyama, A Note on the Partition Function of ABJM theory on S 3, Prog. Theor. Phys. 127 (2012) 229 [arXiv:1110.3555] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  24. [24]
    C.A. Tracy and H. Widom, Proofs of two conjectures related to the thermodynamic Bethe ansatz, Commun. Math. Phys. 179 (1996) 667 [solv-int/9509003] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. [25]
    A.B. Zamolodchikov, Painleve III and 2 − D polymers, Nucl. Phys. B 432 (1994) 427 [hep-th/9409108] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-Matrix Models and Tri-Sasaki Einstein Spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A. Kapustin, B. Willett and I. Yaakov, Nonperturbative Tests of Three-Dimensional Dualities, JHEP 10 (2010) 013 [arXiv:1003.5694] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    I.K. Kostov, Solvable statistical models on a random lattice, Nucl. Phys. Proc. Suppl. 45A (1996) 13 [hep-th/9509124] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. [29]
    V.A. Kazakov, I.K. Kostov and N.A. Nekrasov, D particles, matrix integrals and KP hierarchy, Nucl. Phys. B 557 (1999) 413 [hep-th/9810035] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    J. Hoppe, V. Kazakov and I.K. Kostov, Dimensionally reduced SYM 4 as solvable matrix quantum mechanics, Nucl. Phys. B 571 (2000) 479 [hep-th/9907058] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    M. Hanada, M. Honda, Y. Honma, J. Nishimura, S. Shiba and Y. Yoshida, Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant, JHEP 05 (2012) 121 [arXiv:1202.5300] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G.T. Horowitz and A. Strominger, Translations As Inner Derivations And Associativity Anomalies In Open String Field Theory, Phys. Lett. B 185 (1987) 45 [INSPIRE].MathSciNetADSGoogle Scholar
  33. [33]
    E. Witten, Noncommutative Geometry and String Field Theory, Nucl. Phys. B 268 (1986) 253 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    H. Hata and S. Moriyama, Observables as twist anomaly in vacuum string field theory, JHEP 01 (2002) 042 [hep-th/0111034] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    L. Rastelli, A. Sen and B. Zwiebach, Vacuum string field theory, hep-th/0106010 [INSPIRE].
  36. [36]
    L. Rastelli, A. Sen and B. Zwiebach, Star algebra spectroscopy, JHEP 03 (2002) 029 [hep-th/0111281] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    R. Dijkgraaf, R. Gopakumar, H. Ooguri and C. Vafa, Baby universes in string theory, Phys. Rev. D 73 (2006) 066002 [hep-th/0504221] [INSPIRE].MathSciNetADSGoogle Scholar
  38. [38]
    P. Dorey and R. Tateo, Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations, J. Phys. A 32 (1999) L419 [hep-th/9812211] [INSPIRE].MathSciNetADSGoogle Scholar
  39. [39]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Spectral determinants for Schrödinger equation and Q operators of conformal field theory, J. Statist. Phys. 102 (2001) 567 [hep-th/9812247] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. [40]
    A. Voros, Spectral Zeta Functions, Adv. Stud. Pure Math. 21 (1992) 327.MathSciNetGoogle Scholar
  41. [41]
    A. Voros, Exact quantization condition for anharmonic oscillators (in one dimension), J. Phys. A 27 (1994) 4653.MathSciNetADSGoogle Scholar
  42. [42]
    A. Voros, Airy function - exact WKB results for potentials of odd degree, J. Phys, A 32 (1999) 1301 [math-ph/9811001].MathSciNetADSGoogle Scholar
  43. [43]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory. 2. Q operator and DDV equation, Commun. Math. Phys. 190 (1997) 247 [hep-th/9604044] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Yasuyuki Hatsuda
    • 1
  • Sanefumi Moriyama
    • 2
    Email author
  • Kazumi Okuyama
    • 3
  1. 1.Department of PhysicsTokyo Institute of TechnologyTokyoJapan
  2. 2.Kobayashi Maskawa Institute & Graduate School of MathematicsNagoya UniversityNagoyaJapan
  3. 3.Department of PhysicsShinshu UniversityMatsumotoJapan

Personalised recommendations