Journal of High Energy Physics

, 2011:129 | Cite as

Holographic renormalization for asymptotically Lifshitz spacetimes

  • Robert B. Mann
  • Robert McNeesEmail author


A variational formulation is given for a theory of gravity coupled to a massive vector in four dimensions, with Asymptotically Lifshitz boundary conditions on the fields. For theories with critical exponent z = 2 we obtain a well-defined variational principle by explicitly constructing two actions with local boundary counterterms. As part of our analysis we obtain solutions of these theories on a neighborhood of spatial infinity, study the asymptotic symmetries, and consider different definitions of the boundary stress tensor and associated charges. A constraint on the boundary data for the fields figures prominently in one of our formulations, and in that case the only suitable definition of the boundary stress tensor is due to Hollands, Ishibashi, and Marolf. Their definition naturally emerges from our requirement of finiteness of the action under Hamilton-Jacobi variations of the fields. A second, more general variational principle also allows the Brown-York definition of a boundary stress tensor.


Gauge-gravity correspondence Black Holes Holography and condensed matter physics (AdS/CMT) 


  1. [1]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    D.S. Rokhsar and S.A. Kivelson, Superconductivity and the quantum hard-core dimer gas, Phys. Rev. Lett. 61 (1988) 2376 [inSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    E. Ardonne, P. Fendley and E. Fradkin, Topological order and conformal quantum critical points, Annals Phys. 310 (2004) 493 [cond-mat/0311466] [inSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. [4]
    A. Vishwanath, L. Balents and T. Senthil, Quantum criticality and deconfinement in phase transitions between valence bond solids, Phys. Rev. B 69 (2004) 224416.ADSGoogle Scholar
  5. [5]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [inSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    K. Copsey and R. Mann, Pathologies in asymptotically Lifshitz spacetimes, JHEP 03 (2011) 039 [arXiv:1011.3502] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    R.B. Mann, Lifshitz topological black holes, JHEP 06 (2009) 075 [arXiv:0905.1136] [inSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    U.H. Danielsson and L. Thorlacius, Black holes in asymptotically Lifshitz spacetime, JHEP 03 (2009) 070 [arXiv:0812.5088] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    G. Bertoldi, B.A. Burrington and A. Peet, Black holes in asymptotically Lifshitz spacetimes with arbitrary critical exponent, Phys. Rev. D 80 (2009) 126003 [arXiv:0905.3183] [inSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    K. Balasubramanian and J. McGreevy, An analytic Lifshitz black hole, Phys. Rev. D 80 (2009) 104039 [arXiv:0909.0263] [inSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    D.-W. Pang, On charged Lifshitz black holes, JHEP 01 (2010) 116 [arXiv:0911.2777] [inSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Dehghani and R.B. Mann, Lovelock-Lifshitz black holes, JHEP 07 (2010) 019 [arXiv:1004.4397] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    M. Dehghani and R.B. Mann, Thermodynamics of Lovelock-Lifshitz black branes, Phys. Rev. D 82 (2010) 064019 [arXiv:1006.3510] [inSPIRE].ADSGoogle Scholar
  14. [14]
    W. Brenna, M. Dehghani and R. Mann, Quasi-topological Lifshitz black holes, Phys. Rev. D 84 (2011) 024012 [arXiv:1101.3476] [inSPIRE].ADSGoogle Scholar
  15. [15]
    E. Brynjolfsson, U. Danielsson, L. Thorlacius and T. Zingg, Black hole thermodynamics and heavy fermion metals, JHEP 08 (2010) 027 [arXiv:1003.5361] [inSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Dehghani, R. Mann and R. Pourhasan, Charged Lifshitz black holes, Phys. Rev. D 84 (2011) 046002 [arXiv:1102.0578] [inSPIRE].ADSGoogle Scholar
  17. [17]
    R. Mann and R. Pourhasan, Gauss-Bonnet black holes and heavy fermion metals, JHEP 09 (2011) 062 [arXiv:1105.0389] [inSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P. Koroteev and M. Libanov, On existence of self-tuning solutions in static braneworlds without singularities, JHEP 02 (2008) 104 [arXiv:0712.1136] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    J.W. York, Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett. 28 (1972) 1082 [inSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    G. Gibbons and S. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15 (1977) 2752 [inSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    T. Regge and C. Teitelboim, Role of surface integrals in the Hamiltonian formulation of general relativity, Annals Phys. 88 (1974) 286 [inSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. [22]
    R.B. Mann and D. Marolf, Holographic renormalization of asymptotically flat spacetimes, Class. Quant. Grav. 23 (2006) 2927 [hep-th/0511096] [inSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. [23]
    R.B. Mann, D. Marolf and A. Virmani, Covariant counterterms and conserved charges in asymptotically flat spacetimes, Class. Quant. Grav. 23 (2006) 6357 [gr-qc/0607041] [inSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. [24]
    R.B. Mann, D. Marolf, R. McNees and A. Virmani, On the stress tensor for asymptotically flat gravity, Class. Quant. Grav. 25 (2008) 225019 [arXiv:0804.2079] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    G. Compere, F. Dehouck and A. Virmani, On asymptotic flatness and Lorentz charges, Class. Quant. Grav. 28 (2011) 145007 [arXiv:1103.4078] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    A. Virmani, Asymptotic flatness, Taub-NUT and variational principle, Phys. Rev. D 84 (2011) 064034 [arXiv:1106.4372] [inSPIRE].ADSGoogle Scholar
  27. [27]
    V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [inSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. [28]
    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [inSPIRE].MathSciNetADSGoogle Scholar
  29. [29]
    J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [inSPIRE].CrossRefGoogle Scholar
  30. [30]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [inSPIRE].ADSzbMATHCrossRefGoogle Scholar
  31. [31]
    I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    R.B. Mann and R. McNees, Boundary terms unbound! holographic renormalization of asymptotically linear dilaton gravity, Class. Quant. Grav. 27 (2010) 065015 [arXiv:0905.3848] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    S.F. Ross and O. Saremi, Holographic stress tensor for non-relativistic theories, JHEP 09 (2009) 009 [arXiv:0907.1846] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    S. Hollands, A. Ishibashi and D. Marolf, Comparison between various notions of conserved charges in asymptotically AdS-spacetimes, Class. Quant. Grav. 22 (2005) 2881 [hep-th/0503045] [inSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. [35]
    J. Brown and J.W. York, Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [inSPIRE].MathSciNetADSGoogle Scholar
  36. [36]
    S. Hollands, A. Ishibashi and D. Marolf, Counter-term charges generate bulk symmetries, Phys. Rev. D 72 (2005) 104025 [hep-th/0503105] [inSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    M.C. Cheng, S.A. Hartnoll and C.A. Keeler, Deformations of Lifshitz holography, JHEP 03 (2010) 062 [arXiv:0912.2784] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    J.M. Martín-García, xAct: efficient tensor computer algebra,, (2011).
  39. [39]
    S.F. Ross, Holography for asymptotically locally Lifshitz spacetimes, Class. Quant. Grav. 28 (2011) 215019 [arXiv:1107.4451] [inSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Baggio, J. de Boer and K. Holsheimer, Hamilton-Jacobi renormalization for Lifshitz spacetime, arXiv:1107.5562 [inSPIRE].
  41. [41]
    I. Papadimitriou and K. Skenderis, Correlation functions in holographic RG flows, JHEP 10 (2004) 075 [hep-th/0407071] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of WaterlooWaterlooCanada
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  3. 3.Department of PhysicsLoyola University ChicagoChicagoU.S.A.

Personalised recommendations