Advertisement

Journal of High Energy Physics

, 2011:123 | Cite as

Stimulated superconductivity at strong coupling

  • Ning Bao
  • Xi Dong
  • Eva Silverstein
  • Gonzalo Torroba
Article

Abstract

Stimulating a system with time dependent sources can enhance instabilities, thus increasing the critical temperature at which the system transitions to interesting low-temperature phases such as superconductivity or superfluidity. After reviewing this phenomenon in non-equilibrium BCS theory (and its marginal fermi liquid generalization) we analyze the effect in holographic superconductors. We exhibit a simple regime in which the transition temperature increases parametrically as we increase the frequency of the time-dependent source.

Keywords

Holography and condensed matter physics (AdS/CMT) AdS-CFT Correspondence 

References

  1. 1.
    G.M. Eliashberg, Film superconductivity stimulated by a high-frequency field, JET P Lett. 11 (1970) 114.ADSGoogle Scholar
  2. 2.
    J. Bardeen, L. Cooper and J. Schrieffer, Theory of superconductivity, Phys. Rev. 108 (1957) 1175 [inSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    J-J. Chang and D.J. Scalapino, Kinetic-equation approach to nonequilibrium superconductivity, Phys. Rev. B 15 (1977) 2651.ADSGoogle Scholar
  4. 4.
    J. Chang and D.J. Scalapino, Nonequilibrium superconductivity, J. Low Temp. Phys. 31 (1978) 1. ADSCrossRefGoogle Scholar
  5. 5.
    M. Tinkham, Introduction to Superconductivity, 2nd. edition, Dover, Dover U.K. (2004).Google Scholar
  6. 6.
    A. Robertson and V. Galitski, Nonequilibrium enhancement of Cooper pairing in cold fermion systems, Phys. Rev. A 80 (2009) 063609.ADSGoogle Scholar
  7. 7.
    N.H. Lindner, G. Refael and V. Galitski, Floquet topological insulator in semiconductor quantum wells, Nature Physics 7 (2011) 490 [arXiv:1008.1792]ADSCrossRefGoogle Scholar
  8. 8.
    A. Robertson, V.M. Galitski and G. Refael, Dynamic stimulation of quantum coherence in systems of lattice bosons, Physical Review Letters 106 (2011), no. 16 165701–+ [arXiv:1011.2208]
  9. 9.
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [inSPIRE].ADSCrossRefGoogle Scholar
  10. 10.
    K. Murata, S. Kinoshita and N. Tanahashi, Non-equilibrium condensation process in a holographic superconductor, JHEP 07 (2010) 050 [arXiv:1005.0633] [inSPIRE].ADSCrossRefGoogle Scholar
  11. 11.
    S.R. Das, T. Nishioka and T. Takayanagi, Probe branes, time-dependent couplings and thermalization in AdS/CFT, JHEP 07 (2010) 071 [arXiv:1005.3348] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    V.E. Hubeny and M. Rangamani, A holographic view on physics out of equilibrium, Adv. High Energy Phys. 2010 (2010) 297916 [arXiv:1006.3675] [inSPIRE].Google Scholar
  13. 13.
    K. Hashimoto, N. Iizuka and T. Oka, Rapid thermalization by baryon injection in gauge/gravity duality, Phys. Rev. D 84 (2011) 066005 [arXiv:1012.4463] [inSPIRE].ADSGoogle Scholar
  14. 14.
    T. Faulkner and J. Polchinski, Semi-Holographic Fermi liquids, JHEP 06 (2011) 012 [arXiv:1001.5049] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    S. Weinberg, Superconductivity for particular theorists, Prog. Theor. Phys. Suppl. 86 (1986) 43 [inSPIRE].ADSCrossRefGoogle Scholar
  16. 16.
    S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications, Cambridge University Press, Cambridge U.K. (1996).Google Scholar
  17. 17.
    R. Flauger, E. Pajer and S. Papanikolaou, A striped holographic superconductor, Phys. Rev. D 83 (2011) 064009 [arXiv:1010.1775] [inSPIRE].ADSGoogle Scholar
  18. 18.
    S.S. Gubser, Breaking an abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [inSPIRE].ADSGoogle Scholar
  19. 19.
    G.T. Horowitz and M.M. Roberts, Holographic superconductors with various condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [inSPIRE].ADSGoogle Scholar
  20. 20.
    G. Dvali and S. Kachru, New old inflation, hep-th/0309095 [inSPIRE].
  21. 21.
    L.D. Landau and E.M. Lifshitz, Quantum mechanics (non-relativistic theory), Course of Theoretical Physics 3, 3rd edition, Butterworth-Heinemann, Oxford U.K. (1981).Google Scholar
  22. 22.
    R. Flauger, L. McAllister, E. Pajer, A. Westphal and G. Xu, Oscillations in the CMB from axion monodromy inflation, JCAP 06 (2010) 009 [arXiv:0907.2916] [inSPIRE].ADSCrossRefGoogle Scholar
  23. 23.
    N. Kaloper, E. Silverstein and L. Susskind, Gauge symmetry and localized gravity in M-theory, JHEP 05 (2001) 031 [hep-th/0006192] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [inSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 25.
    D. Marolf and S.F. Ross, Boundary conditions and new dualities: vector fields in AdS/CFT, JHEP 11 (2006) 085 [hep-th/0606113] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [inSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Ning Bao
    • 1
  • Xi Dong
    • 1
  • Eva Silverstein
    • 1
  • Gonzalo Torroba
    • 1
  1. 1.Stanford Institute for Theoretical PhysicsDepartment of Physics and SLACStanfordU.S.A.

Personalised recommendations