Journal of High Energy Physics

, 2011:103 | Cite as

Pure samples of quark and gluon jets at the LHC

  • Jason Gallicchio
  • Matthew D. Schwartz


Having pure samples of quark and gluon jets would greatly facilitate the study of jet properties and substructure, with many potential standard model and new physics applications. To this end, we consider multijet and jets + X samples, to determine the purity that can be achieved by simple kinematic cuts leaving reasonable production cross sections. We find, for example, that at the 7TeV LHC, the pp → γ+2jets sample can provide 98% pure quarkjets with 200 GeV of transverse momentum and a cross section of 5 pb. Toget 10 pb of 200 GeV jets with 90% gluon purity, the pp → 3jets sample can be used. b+2jets is also useful for gluons, but only if the b-tagging is very efficient.


Jets Hadronic Colliders 


  1. [1]
    D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [inSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    T. Han, D. Krohn, L.-T. Wang and W. Zhu, New Physics Signals in Longitudinal Gauge Boson Scattering at the LHC, JHEP 03 (2010) 082 [arXiv:0911.3656] [inSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [inSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J. Gallicchio, J. Huth, M. Kagan, M.D. Schwartz, K. Black, et al., Multivariate discrimination and the Higgs + W/Z search, JHEP 04 (2011) 069 [arXiv:1010.3698] [inSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    Y. Cui, Z. Han and M.D. Schwartz, W-jet Tagging: Optimizing the Identification of Boosted Hadronically-Decaying W Bosons, Phys. Rev. D 83 (2011) 074023 [arXiv:1012.2077] [inSPIRE].ADSGoogle Scholar
  6. [6]
    A. Abdesselam, E. Kuutmann, U. Bitenc, G. Brooijmans, J. Butterworth, et al., Boosted objects: A Probe of beyond the Standard Model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [inSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [inSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    D. Krohn, J. Shelton and L.-T. Wang, Measuring the Polarization of Boosted Hadronic Tops, JHEP 07 (2010) 041 [arXiv:0909.3855] [inSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Banfi, G.P. Salam and G. Zanderighi, Infrared safe definition of jet flavor, Eur. Phys. J. C 47 (2006) 113 [hep-ph/0601139] [inSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Gallicchio and M.D. Schwartz, Seeing in Color: Jet Superstructure, Phys. Rev. Lett. 105 (2010) 022001 [arXiv:1001.5027] [inSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet Shapes and Jet Algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [inSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R. Kelley, M.D. Schwartz and H.X. Zhu, Resummation of jet mass with and without a jet veto, arXiv:1102.0561 [inSPIRE].
  13. [13]
    J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [inSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D. Stump, J. Huston, J. Pumplin, W.-K. Tung, H. Lai, et al., Inclusive jet production, parton distributions and the search for new physics, JHEP 10 (2003) 046 [hep-ph/0303013] [inSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Hoecker et al., TMVA Toolkit for Multivariate Data Analysis with ROOT,
  16. [16]
    R. Brun and F. Rademakers, ROOT: An object oriented data analysis framework, Nucl. Instrum. Meth. A 389 (1997) 81 [inSPIRE].ADSGoogle Scholar
  17. [17]
  18. [18]
    OPAL collaboration, O. Biebel, A comparison of b and uds quarks to gluon jets, SPIRES Conference C96/08/11.1 (1996) [inSPIRE].
  19. [19]
    M. Dasgupta and G. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [inSPIRE].ADSGoogle Scholar
  20. [20]
    R. Kelley, M.D. Schwartz, R.M. Schabinger and H.X. Zhu, The two-loop hemisphere soft function, Phys. Rev. D 84 (2011) 045022 [arXiv:1105.3676] [inSPIRE].ADSGoogle Scholar
  21. [21]
    A. Hornig, C. Lee, I.W. Stewart, J.R. Walsh and S. Zuberi, Non-global Structure of the \( O\left( {\alpha_s^2} \right) \) Dijet Soft Function, JHEP 08 (2011) 054 [arXiv:1105.4628] [inSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [inSPIRE].ADSGoogle Scholar
  23. [23]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [inSPIRE].ADSGoogle Scholar
  24. [24]
    T. Becher and M.D. Schwartz, Direct photon production with effective field theory, JHEP 02 (2010) 040 [arXiv:0911.0681] [inSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J. Gallicchio and M.D. Schwartz, Quark and Gluon Tagging at the LHC, arXiv:1106.3076 [inSPIRE].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Jefferson Physical LaboratoryHarvard UniversityCambridgeU.S.A.

Personalised recommendations