Advertisement

Electric and magnetic charges in N = 2 conformal supergravity theories

  • Bernard de WitEmail author
  • Maaike van Zalk
Open Access
Article

Abstract

General Lagrangians are constructed for N = 2 conformal supergravity theories in four space-time dimensions involving gauge groups with abelian and/or non-abelian electric and magnetic charges. The charges are encoded in the gauge group embedding tensor. The scalar potential induced by the gauge interactions is quadratic in this tensor, and, when the embedding tensor is treated as a spurionic quantity, it is formally covariant with respect to electric/magnetic duality. This work establishes a general framework for studying any deformation induced by gauge interactions of matter-coupled N = 2 supergravity theories. As an application, full and residual supersymmetry realizations in maximally symmetric space-times are reviewed. Furthermore, a general classification is presented of supersymmetric solutions in AdS2 × S 2 space-times. As it turns out, these solutions allow either eight or four supersymmetries. With four supersymmetries, the spinorial parameters are Killing spinors of AdS2 that are constant on S 2, so that they carry no spin, while the bosonic background is rotationally invariant.

Keywords

Supersymmetry and Duality Gauge Symmetry Supergravity Models 

References

  1. [1]
    B. de Wit, Electric magnetic dualities in supergravity, Nucl. Phys. Proc. Suppl. 101 (2001) 154 [hep-th/0103086] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    L. Andrianopoli et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. [3]
    B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP 09 (2005) 016 [hep-th/0507289] [SPIRES].CrossRefGoogle Scholar
  4. [4]
    B. de Wit, J. van Holten and A. Van Proeyen, Structure of N = 2 supergravity, Nucl. Phys. B 184 (1981) 77 [Erratum ibid. B 222 (1983) 516] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    B. de Wit and A. Van Proeyen, Potentials and symmetries of general gauged N = 2 supergravity: Yang-Mills models, Nucl. Phys. B 245 (1984) 89 [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    B. de Wit, P. Lauwers and A. Van Proeyen, Lagrangians of N = 2 supergravity-matter systems, Nucl. Phys. B 255 (1985) 569 [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    M. de Vroome and B. de Wit, Lagrangians with electric and magnetic charges of N = 2 supersymmetric gauge theories, JHEP 08 (2007) 064 [arXiv:0707.2717] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    J. Louis and A. Micu, Type 2 theories compactified on Calabi-Yau threefolds in the presence of background fluxes, Nucl. Phys. B 635 (2002) 395 [hep-th/0202168] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    G. Dall’Agata, R. D’Auria, L. Sommovigo and S. Vaula, D = 4, N = 2 gauged supergravity in the presence of tensor multiplets, Nucl. Phys. B 682 (2004) 243 [hep-th/0312210] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    L. Sommovigo and S. Vaula, D = 4, N = 2 supergravity with abelian electric and magnetic charge, Phys. Lett. B 602 (2004) 130 [hep-th/0407205] [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    R. D’Auria, L. Sommovigo and S. Vaula, N = 2 supergravity Lagrangian coupled to tensor multiplets with electric and magnetic fluxes, JHEP 11 (2004) 028 [hep-th/0409097] [SPIRES].MathSciNetCrossRefGoogle Scholar
  12. [12]
    J. Schon and M. Weidner, Gauged N = 4 supergravities, JHEP 05 (2006) 034 [hep-th/0602024] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    B. de Wit, H. Samtleben and M. Trigiante, The maximal D = 4 supergravities, JHEP 06 (2007) 049 [arXiv:0705.2101] [SPIRES].CrossRefGoogle Scholar
  14. [14]
    J. Hartong, M. Hubscher and T. Ortín, The supersymmetric tensor hierarchy of N = 1, d = 4 supergravity, JHEP 06 (2009) 090 [arXiv:0903.0509] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    I. Antoniadis, H. Partouche and T. Taylor, Spontaneous breaking of N = 2 global supersymmetry, Phys. Lett. B 372 (1996) 83 [hep-th/9512006] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    K. Behrndt, G. Lopes Cardoso and D. Lüst, Curved BPS domain wall solutions in four-dimensional N = 2 supergravity, Nucl. Phys. B 607 (2001) 391 [hep-th/0102128] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    J. Louis, P. Smyth and H. Triendl, Spontaneous N = 2 to N = 1 supersymmetry breaking in supergravity and type II string theory, JHEP 02 (2010) 103 [arXiv:0911.5077] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    J. Louis, P. Smyth and H. Triendl, The N = 1 low-energy effective action of spontaneously broken N = 2 supergravities, JHEP 10 (2010) 017 [arXiv:1008.1214] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    S. Cecotti, L. Girardello and M. Porrati, Two into one won’t go, Phys. Lett. B 145 (1984) 61 [SPIRES].MathSciNetADSGoogle Scholar
  21. [21]
    S. Cecotti, L. Girardello and M. Porrati, An exceptional N = 2 supergravity with flat potential and partial superHiggs, Phys. Lett. B 168 (1986) 83 [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    S. Ferrara, L. Girardello and M. Porrati, Spontaneous breaking of N = 2 to N = 1 in rigid and local supersymmetric theories, Phys. Lett. B 376 (1996) 275 [hep-th/9512180] [SPIRES].MathSciNetADSGoogle Scholar
  23. [23]
    S. Ferrara, L. Girardello and M. Porrati, Minimal Higgs branch for the breaking of half of the supersymmetries in N = 2 supergravity, Phys. Lett. B 366 (1996) 155 [hep-th/9510074] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    P. Fré, L. Girardello, I. Pesando and M. Trigiante, Spontaneous N = 2 → N = 1 local supersymmetry breaking with surviving compact gauge group, Nucl. Phys. B 493 (1997) 231 [hep-th/9607032] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    K. Hristov, H. Looyestijn and S. Vandoren, Maximally supersymmetric solutions of D = 4 N = 2 gauged supergravity, JHEP 11 (2009) 115 [arXiv:0909.1743] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    P. Hasenfratz and G. ’t Hooft, A fermion-boson puzzle in a gauge theory, Phys. Rev. Lett. 36 (1976) 1119 [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    K. Hristov and S. Vandoren, Static supersymmetric black holes in AdS 4 with spherical symmetry, JHEP 04 (2011) 047 [arXiv:1012.4314] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    B. de Wit, S. Katmadas and M. van Zalk, New supersymmetric higher-derivative couplings: full N = 2 superspace does not count!, JHEP 01 (2011) 007 [arXiv:1010.2150] [SPIRES].CrossRefGoogle Scholar
  30. [30]
    B. de Wit, P.G. Lauwers, R. Philippe, S.Q. Su and A. Van Proeyen, Gauge and matter fields coupled to N = 2 supergravity, Phys. Lett. B 134 (1984) 37 [SPIRES].ADSGoogle Scholar
  31. [31]
    S. Cecotti, S. Ferrara and L. Girardello, Geometry of type II superstrings and the moduli of superconformal field theories, Int. J. Mod. Phys. A 4 (1989) 2475 [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    B. de Wit, B. Kleijn and S. Vandoren, Superconformal hypermultiplets, Nucl. Phys. B 568 (2000) 475 [hep-th/9909228] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    B. de Wit, B. Kleijn and S. Vandoren, Rigid N = 2 superconformal hypermultiplets, hep-th/9808160 [SPIRES].
  34. [34]
    G. Gibbons and P. Rychenkova, Cones, tri-Sasakian structures and superconformal invariance, Phys. Lett. B 443 (1998) 138 [hep-th/9809158] [SPIRES].MathSciNetADSGoogle Scholar
  35. [35]
    B. de Wit, M. Roček and S. Vandoren, Gauging isometries on hyper-Kähler cones and quaternion Kähler manifolds, Phys. Lett. B 511 (2001) 302 [hep-th/0104215] [SPIRES].ADSGoogle Scholar
  36. [36]
    A. Swann, HyperKähler and quaternionic Kähler geometry, Math. Ann. 289 (1991) 421.MathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    B. de Wit and F. Saueressig, Off-shell N = 2 tensor supermultiplets, JHEP 09 (2006) 062 [hep-th/0606148] [SPIRES].CrossRefGoogle Scholar
  38. [38]
    B. de Wit, H. Samtleben and M. Trigiante, Gauging maximal supergravities, Fortsch. Phys. 52 (2004) 489 [hep-th/0311225] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  39. [39]
    B. de Wit and H. Samtleben, Gauged maximal supergravities and hierarchies of nonAbelian vector-tensor systems, Fortsch. Phys. 53 (2005) 442 [hep-th/0501243] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  40. [40]
    B. de Wit, H. Nicolai and H. Samtleben, Gauged supergravities, tensor hierarchies and M-theory, JHEP 02 (2008) 044 [arXiv:0801.1294] [SPIRES].CrossRefGoogle Scholar
  41. [41]
    R. D’Auria, S. Ferrara and P. Fré, Special and quaternionic isometries: General couplings in N = 2 supergravity and the scalar potential, Nucl. Phys. B 359 (1991) 705 [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    G. LopesCardoso, B. de Wit, J. Kappeli and T. Mohaupt, Stationary BPS solutions in N = 2 supergravity with R 2 interactions, JHEP 12 (2000) 019 [hep-th/0009234] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    L. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    M.M. Caldarelli and D. Klemm, Supersymmetry of Anti-de Sitter black holes, Nucl. Phys. B 545 (1999) 434 [hep-th/9808097] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    J.B. Gutowski and H.S. Reall, General supersymmetric AdS 5 black holes, JHEP 04 (2004) 048 [hep-th/0401129] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUtrecht UniversityUtrechtThe Netherlands
  2. 2.Nikhef Theory GroupAmsterdamThe Netherlands

Personalised recommendations