Canonical quantization of non-commutative holonomies in 2 + 1 loop quantum gravity

  • K. Noui
  • A. Perez
  • D. PranzettiEmail author
Open Access


In this work we investigate the canonical quantization of 2 + 1 gravity with cosmological constant Λ > 0 in the canonical framework of loop quantum gravity. The unconstrained phase space of gravity in 2 + 1 dimensions is coordinatized by an SU(2) connection A and the canonically conjugate triad field e. A natural regularization of the constraints of 2 + 1 gravity can be defined in terms of the holonomies of \( {A_\pm } = A\pm \sqrt {{\Lambda e}} \). As a first step towards the quantization of these constraints we study the canonical quantization of the holonomy of the connection A λ = A + λe (for λ\( \mathbb{R} \)) on the kinematical Hilbert space of loop quantum gravity. The holonomy operator associated to a given path acts non trivially on spin network links that are transversal to the path (a crossing). We provide an explicit construction of the quantum holonomy operator. In particular, we exhibit a close relationship between the action of the quantum holonomy at a crossing and Kauffman’s q-deformed crossing identity (with \( q = \exp \left( {i\hbar \lambda /2} \right) \)). The crucial difference is that (being an operator acting on the kinematical Hilbert space of LQG) the result is completely described in terms of standard SU(2) spin network states (in contrast to q-deformed spin networks in Kauffman’s identity). We discuss the possible implications of our result.


Models of Quantum Gravity Quantum Groups Topological Field Theories 


  1. [1]
    E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. [2]
    E. Witten, (2 + 1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys. B 311 (1988) 46 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    E. Witten, Topology Changing Amplitudes in (2 + 1)-Dimensional Gravity, Nucl. Phys. B 323 (1989) 113 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    N. Reshetikhin. and V.G. Turaev, Invariants of three manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991) 547.MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. [5]
    A.Y. Alekseev, H. Grosse and V. Schomerus, Combinatorial quantization of the Hamiltonian Chern-Simons theory. 2, Commun. Math. Phys. 174 (1995) 561 [hep-th/9408097] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    A.Y. Alekseev, H. Grosse and V. Schomerus, Combinatorial quantization of the Hamiltonian Chern-Simons theory, Commun. Math. Phys. 172 (1995) 317 [hep-th/9403066] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. [7]
    V.V. Fock and A.A. Rosly, Poisson structure on moduli of flat connections on Riemann surfaces and r-matrix, Am. Math. Soc. Transl. 191 (1999) 67 [math/9802054].MathSciNetGoogle Scholar
  8. [8]
    E. Buffenoir, K. Noui and P. Roche, Hamiltonian quantization of Chern-Simons theory with SL(2,C) group, Class. Quant. Grav. 19 (2002) 4953 [hep-th/0202121] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. [9]
    C. Meusburger and K. Noui, Combinatorial quantisation of the Euclidean torus universe, Nucl. Phys. B 841 (2010) 463 [arXiv:1007.4615] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    V.G. Turaev and O.Y. Viro, State sum invariants of 3 manifolds and quantum 6j symbols, Topology 31 (1992) 865 [SPIRES].MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    S. Mizoguchi and T. Tada, Three-dimensional gravity from the Turaev-Viro invariant, Phys. Rev. Lett. 68 (1992) 1795 [hep-th/9110057] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. [12]
    Y. Taylor and C. Woodward, 6j symbols for U q(sl 2) and non-Euclidean tetrahedra, math/0305113.
  13. [13]
    K. Noui and A. Perez, Three dimensional loop quantum gravity: Physical scalar product and spin foam models, Class. Quant. Grav. 22 (2005) 1739 [gr-qc/0402110] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. [14]
    V. Bonzom and L. Freidel, The Hamiltonian constraint in 3d Riemannian loop quantum gravity, Class. Quant. Grav. 28 (2011) 195006 [arXiv:1101.3524] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    A. Ashtekar, A. Corichi and J.A. Zapata, Quantum theory of geometry. III: Non-commutativity of Riemannian structures, Class. Quant. Grav. 15 (1998) 2955 [gr-qc/9806041] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. [16]
    T. Thiemann, Modern canonical quantum general relativity, gr-qc/0110034 [SPIRES].
  17. [17]
    C. Rovelli, Quantum gravity, Cambridge University Press, Cambridge U.K. (2004).zbMATHCrossRefGoogle Scholar
  18. [18]
    A. Ashtekar and J. Lewandowski, Background independent quantum gravity: A status report, Class. Quant. Grav. 21 (2004) R53 [gr-qc/0404018] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    A. Perez, Introduction to loop quantum gravity and spin foams, gr-qc/0409061 [SPIRES].
  20. [20]
    J. Lewandowski, A. Okolow, H. Sahlmann and T. Thiemann, Uniqueness of diffeomorphism invariant states on holonomy- flux algebras, Commun. Math. Phys. 267 (2006) 703 [gr-qc/0504147] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. [21]
    C. Rovelli and L. Smolin, Spin networks and quantum gravity, Phys. Rev. D 52 (1995) 5743 [gr-qc/9505006] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    J.C. Baez, Generalized measures in gauge theory, Lett. Math. Phys. 31 (1994) 213 [hep-th/9310201] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. [23]
    J.C. Baez, Diffeomorphism invariant generalized measures on the space of connections modulo gauge transformations, hep-th/9305045 [SPIRES].
  24. [24]
    A. Ashtekar and J. Lewandowski, Projective techniques and functional integration for gauge theories, J. Math. Phys. 36 (1995) 2170 [gr-qc/9411046] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. [25]
    A. Ashtekar and J. Lewandowski, Differential geometry on the space of connections via graphs and projective limits, J. Geom. Phys. 17 (1995) 191 [hep-th/9412073] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. [26]
    T. Jacobson and L. Smolin, Nonperturbative Quantum Geometries, Nucl. Phys. B 299 (1988) 295 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    L.H. Kauffman, Knots and physics, World Scientific, Singapore (1991).zbMATHGoogle Scholar
  28. [28]
    L.H. Kauffmann and S. Lins, Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds, Annals of Mathematical Studies, Princeton Univ. Press., Princeton U.S.A. (1994).Google Scholar
  29. [29]
    A. Perez, The spin-foam-representation of loop quantum gravity, gr-qc/0601095 [SPIRES].
  30. [30]
    A. Perez, Spin foam models for quantum gravity, Class. Quant. Grav. 20 (2003) R43 [gr-qc/0301113] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    D. Oriti, Spacetime geometry from algebra: Spin foam models for non-perturbative quantum gravity, Rept. Prog. Phys. 64 (2001) 1703 [gr-qc/0106091] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    J.C. Baez, An introduction to spin foam models of BF theory and quantum gravity, Lect. Notes Phys. 543 (2000) 25 [gr-qc/9905087] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    J.C.Baez, Spin foam models, Class. Quant. Grav. 15 (1998) 1827 [gr-qc/9709052] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  34. [34]
    E. Alesci, K. Noui and F. Sardelli, Spin-Foam Models and the Physical Scalar Product, Phys. Rev. D 78 (2008) 104009 [arXiv:0807.3561] [SPIRES].ADSGoogle Scholar
  35. [35]
    E. Alesci and C. Rovelli, A regularization of the hamiltonian constraint compatible with the spinfoam dynamics, Phys. Rev. D 82 (2010) 044007 [arXiv:1005.0817] [SPIRES].ADSGoogle Scholar
  36. [36]
    V. Bonzom, Spin foam models and the Wheeler-DeWitt equation for the quantum 4-simplex, Phys. Rev. D 84 (2011) 024009 [arXiv:1101.1615] [SPIRES].ADSGoogle Scholar
  37. [37]
    A. Perez and D. Pranzetti, On the regularization of the constraints algebra of Quantum Gravity in 2 + 1 dimensions with non-vanishing cosmological constant, Class. Quant. Grav. 27 (2010) 145009 [gr-qc/10013292].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    D. Pranzetti, 2 + 1 gravity with positive cosmological constant in LQG: a proposal for the physical state, gr-qc/11015585.
  39. [39]
    M. Duflo, Opérateurs différentiels bi-invariants sur un groupe de Lie, Ann. Scient. Ecole Norm. Sup. 10 (1977) 265288.MathSciNetGoogle Scholar
  40. [40]
    L. Freidel and S. Majid, Noncommutative Harmonic Analysis, Sampling Theory and the Duflo Map in 2 + 1 Quantum Gravity, Class. Quant. Grav. 25 (2008) 045006 [hep-th/0601004] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    H. Sahlmann and T. Thiemann, Chern-Simons theory, Stokes’ Theorem and the Duflo map, J. Geom. Phys. 61 (2011) 1104 [arXiv:1101.1690] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  42. [42]
    A. Alekseev, A.P. Polychronakos and M. Smedback, On area and entropy of a black hole, Phys. Lett. B 574 (2003) 296 [hep-th/0004036] [SPIRES].MathSciNetADSGoogle Scholar
  43. [43]
    A. Corichi, Comments on area spectra in loop quantum gravity, Rev. Mex. Fis. 50 (2005) 549 [gr-qc/0402064] [SPIRES].MathSciNetGoogle Scholar
  44. [44]
    W. Wieland, Complex Ashtekar variables, the Kodama state and spinfoam gravity, arXiv:1105.2330 [SPIRES].
  45. [45]
    M. Han, 4-dimensional Spin-foam Model with Quantum Lorentz Group, J. Math. Phys. 52 (2011) 072501 [arXiv:1012.4216] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    M. Han, Cosmological Constant in LQG Vertex Amplitude, arXiv:1105.2212 [SPIRES].
  47. [47]
    W.J. Fairbairn and C. Meusburger, Quantum deformation of two four-dimensional spin foam models, arXiv:1012.4784 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques et Physique ThéoriqueToursFrance
  2. 2.Centre de Physique Théorique,1MarseilleFrance

Personalised recommendations