Striped instability of a holographic Fermi-like liquid

  • Oren Bergman
  • Niko Jokela
  • Gilad Lifschytz
  • Matthew Lippert


We consider a holographic description of a system of strongly-coupled fermions in 2 + 1 dimensions based on a D7-brane probe in the background of D3-branes. The black hole embedding represents a Fermi-like liquid. We study the excitations of the Fermi liquid system. Above a critical density which depends on the temperature, the system becomes unstable towards an inhomogeneous modulated phase which is similar to a charge density and spin wave state. The essence of this instability can be effectively described by a Maxwell-axion theory with a background electric field. We also consider the fate of zero sound at non-zero temperature.


D-branes AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 


  1. [1]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [SPIRES].ADSGoogle Scholar
  3. [3]
    M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    E. D’Hoker and P. Kraus, Holographic metamagnetism, quantum criticality and crossover behavior, JHEP 05 (2010) 083 [arXiv:1003.1302] [SPIRES].MathSciNetCrossRefGoogle Scholar
  5. [5]
    G. Lifschytz and M. Lippert, Holographic magnetic phase transition, Phys. Rev. D 80 (2009) 066007 [arXiv:0906.3892] [SPIRES].ADSGoogle Scholar
  6. [6]
    E. Keski-Vakkuri and P. Kraus, Quantum Hall effect in AdS/CFT, JHEP 09 (2008) 130 [arXiv:0805.4643] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    J.L. Davis, P. Kraus and A. Shah, Gravity dual of a quantum Hall plateau transition, JHEP 11 (2008) 020 [arXiv:0809.1876] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    M. Fujita, W. Li, S. Ryu and T. Takayanagi, Fractional quantum hall effect via holography: Chern-Simons, edge states and hierarchy, JHEP 06 (2009) 066 [arXiv:0901.0924] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    Y. Hikida, W. Li and T. Takayanagi, ABJM with flavors and FQHE, JHEP 07 (2009) 065 [arXiv:0903.2194] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    J. Alanen, E. Keski-Vakkuri, P. Kraus and V. Suur-Uski, AC transport at holographic quantum Hall transitions, JHEP 11 (2009) 014 [arXiv:0905.4538] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Quantum Hall effect in a holographic model, JHEP 10 (2010) 063 [arXiv:1003.4965] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    N. Jokela, G. Lifschytz and M. Lippert, Magneto-roton excitation in a holographic quantum Hall fluid, JHEP 02 (2011) 104 [arXiv:1012.1230] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    N. Jokela, M.Järvinen and M. Lippert, A holographic quantum Hall model at integer filling, JHEP 05 (2011) 101 [arXiv:1101.3329] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    S.-J. Rey, String theory on thin semiconductors: holographic realization of Fermi points and surfaces, Prog. Theor. Phys. Suppl. 177 (2009) 128 [arXiv:0911.5295] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  15. [15]
    G. Gruner, The dynamics of spin-density waves, Rev. Mod. Phys. 66 (1994) 1 [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    G. Gruner, The dynamics of charge-density waves, Rev. Mod. Phys. 60 (1988) 1129 [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    S. Nakamura, H. Ooguri and C.-S. Park, Gravity dual of spatially modulated phase, Phys. Rev. D 81 (2010) 044018 [arXiv:0911.0679] [SPIRES].ADSGoogle Scholar
  18. [18]
    H. Ooguri and C.-S. Park, Spatially modulated phase in holographic quark-gluon plasma, Phys. Rev. Lett. 106 (2011) 061601 [arXiv:1011.4144] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    H. Ooguri and C.-S. Park, Holographic end-point of spatially modulated phase transition, Phys. Rev. D 82 (2010) 126001 [arXiv:1007.3737] [SPIRES].ADSGoogle Scholar
  20. [20]
    C.A.B. Bayona, K. Peeters and M. Zamaklar, A non-homogeneous ground state of the low-temperature Sakai-Sugimoto model, JHEP 06 (2011) 092 [arXiv:1104.2291] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP 08 (2011) 140 [arXiv:1106.2004] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    A. Karch, M. Kulaxizi and A. Parnachev, Notes on properties of holographic matter, JHEP 11 (2009) 017 [arXiv:0908.3493] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    A. Karch, D.T. Son and A.O. Starinets, Zero sound from holography, arXiv:0806.3796 [SPIRES].
  24. [24]
    I. Amado, M. Kaminski and K. Landsteiner, Hydrodynamics of holographic superconductors, JHEP 05 (2009) 021 [arXiv:0903.2209] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    M. Kaminski, K. Landsteiner, J. Mas, J.P. Shock and J. Tarrio, Holographic operator mixing and quasinormal modes on the brane, JHEP 02 (2010) 021 [arXiv:0911.3610] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    M. Kulaxizi and A. Parnachev, Comments on Fermi liquid from holography, Phys. Rev. D 78 (2008) 086004 [arXiv:0808.3953] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Oren Bergman
    • 1
  • Niko Jokela
    • 1
    • 2
  • Gilad Lifschytz
    • 2
  • Matthew Lippert
    • 3
  1. 1.Department of PhysicsTechnionHaifaIsrael
  2. 2.Department of Mathematics and PhysicsUniversity of Haifa at OranimTivonIsrael
  3. 3.Crete Center for Theoretical Physics, Department of PhysicsUniversity of CreteHeraklionGreece

Personalised recommendations