Advertisement

Bessel-weighted asymmetries in semi-inclusive deep inelastic scattering

  • D. Boer
  • L. Gamberg
  • B. U. Musch
  • A. Prokudin
Open Access
Article

Abstract

The concept of weighted asymmetries is revisited for semi-inclusive deep inelastic scattering. We consider the cross section in Fourier space, conjugate to the outgoing hadron’s transverse momentum, where convolutions of transverse momentum dependent parton distribution functions and fragmentation functions become simple products. Individual asymmetric terms in the cross section can be projected out by means of a generalized set of weights involving Bessel functions. Advantages of employing these Bessel weights are that they suppress (divergent) contributions from high transverse momentum and that soft factors cancel in (Bessel-)weighted asymmetries. Also, the resulting compact expressions immediately connect to previous work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions and to quantities accessible in lattice QCD. Bessel-weighted asymmetries are thus model independent observables that augment the description and our understanding of correlations of spin and momentum in nucleon structure.

Keywords

Deep Inelastic Scattering QCD Parton Model 

References

  1. [1]
    J.P. Ralston and D.E. Soper, Production of Dimuons from High-Energy Polarized Proton Proton Collisions, Nucl. Phys. B 152 (1979) 109 [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    D.W. Sivers, Single Spin Production Asymmetries from the Hard Scattering of Point-Like Constituents, Phys. Rev. D 41 (1990) 83 [SPIRES].ADSGoogle Scholar
  3. [3]
    J.C. Collins, Fragmentation of transversely polarized quarks probed in transverse momentum distributions, Nucl. Phys. B 396 (1993) 161 [hep-ph/9208213] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    A. Kotzinian, New quark distributions and semiinclusive electroproduction on the polarized nucleons, Nucl. Phys. B 441 (1995) 234 [hep-ph/9412283] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    P.J. Mulders and R.D. Tangerman, The complete tree-level result up to order 1/Q for polarized deep-inelastic leptoproduction, Nucl. Phys. B 461 (1996) 197 [hep-ph/9510301] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    A.M. Kotzinian and P.J. Mulders, Probing transverse quark polarization via azimuthal asymmetries in leptoproduction, Phys. Lett. B 406 (1997) 373 [hep-ph/9701330] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    D. Boer and P.J. Mulders, Time-reversal odd distribution functions in leptoproduction, Phys. Rev. D 57 (1998) 5780 [hep-ph/9711485] [SPIRES].ADSGoogle Scholar
  8. [8]
    A. Bacchetta et al., Semi-inclusive deep inelastic scattering at small transverse momentum, JHEP 02 (2007) 093 [hep-ph/0611265] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    G. Parisi and R. Petronzio, Small Transverse Momentum Distributions in Hard Processes, Nucl. Phys. B 154 (1979) 427 [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    H.F. Jones and J. Wyndham, On the equivalence between the impact parameter and transverse momentum space formalism for the Drell-Yan process, J. Phys. A 14 (1981) 1457 [SPIRES].ADSGoogle Scholar
  11. [11]
    J.C. Collins and D.E. Soper, Parton Distribution and Decay Functions, Nucl. Phys. B 194 (1982) 445 [SPIRES].ADSGoogle Scholar
  12. [12]
    S.D. Ellis, N. Fleishon and W.J. Stirling, Logarithmic approximations, quark form-factors and Quantum Chromodynamics, Phys. Rev. D 24 (1981) 1386 [SPIRES].ADSGoogle Scholar
  13. [13]
    J.C. Collins, D.E. Soper and G.F. Sterman, Transverse Momentum Distribution in Drell-Yan Pair and W and Z Boson Production, Nucl. Phys. B 250 (1985) 199 [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    X.-d. Ji, J.-P. Ma and F. Yuan, QCD factorization for spin-dependent cross sections in DIS and Drell-Yan processes at low transverse momentum, Phys. Lett. B 597 (2004) 299 [hep-ph/0405085] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    J.C. Collins, Foundations of Perturbative QCD, Cambridge University Press, Cambridge U.K. (2011).CrossRefGoogle Scholar
  16. [16]
    J.C. Collins and F. Hautmann, Infrared divergences and non-lightlike eikonal lines in Sudakov processes, Phys. Lett. B 472 (2000) 129 [hep-ph/9908467] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    J.C. Collins and A. Metz, Universality of soft and collinear factors in hard-scattering factorization, Phys. Rev. Lett. 93 (2004) 252001 [hep-ph/0408249] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    X.-d. Ji, J.-p. Ma and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum, Phys. Rev. D 71 (2005) 034005 [hep-ph/0404183] [SPIRES].ADSGoogle Scholar
  19. [19]
    S.M. Aybat and T.C. Rogers, TMD Parton Distribution and Fragmentation Functions with QCD Evolution, Phys. Rev. D 83 (2011) 114042 [arXiv:1101.5057] [SPIRES].ADSGoogle Scholar
  20. [20]
    M. Gourdin, Semiinclusive reactions induced by leptons, Nucl. Phys. B 49 (1972) 501 [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    M. Diehl and S. Sapeta, On the analysis of lepton scattering on longitudinally or transversely polarized protons, Eur. Phys. J. C 41 (2005) 515 [hep-ph/0503023] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    A. Bacchetta, U. D’Alesio, M. Diehl and C.A. Miller, Single-spin asymmetries: The Trento conventions, Phys. Rev. D 70 (2004) 117504 [hep-ph/0410050] [SPIRES].ADSGoogle Scholar
  23. [23]
    D. Boer, P.J. Mulders and F. Pijlman, Universality of T-odd effects in single spin and azimuthal asymmetries, Nucl. Phys. B 667 (2003) 201 [hep-ph/0303034] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    D.E. Soper, Partons and Their Transverse Momenta in Quantum Chromodynamics, Phys. Rev. Lett. 43 (1979) 1847 [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    A.V. Belitsky, X. Ji and F. Yuan, Final state interactions and gauge invariant parton distributions, Nucl. Phys. B 656 (2003) 165 [hep-ph/0208038] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    C.J. Bomhof, P.J. Mulders and F. Pijlman, Gauge link structure in quark quark correlators in hard processes, Phys. Lett. B 596 (2004) 277 [hep-ph/0406099] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    C.J. Bomhof, P.J. Mulders and F. Pijlman, The construction of gauge-links in arbitrary hard processes, Eur. Phys. J. C 47 (2006) 147 [hep-ph/0601171] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    A. Idilbi, X.-d. Ji, J.-P. Ma and F. Yuan, Collins-Soper equation for the energy evolution of transverse-momentum and spin dependent parton distributions, Phys. Rev. D 70 (2004) 074021 [hep-ph/0406302] [SPIRES].ADSGoogle Scholar
  29. [29]
    K. Goeke, A. Metz and M. Schlegel, Parameterization of the quark-quark correlator of a spin-1/2 hadron, Phys. Lett. B 618 (2005) 90 [hep-ph/0504130] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    J.C. Collins and D.E. Soper, Back-To-Back Jets in QCD, Nucl. Phys. B 193 (1981) 381 [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    J.C. Collins, What exactly is a parton density?, Acta Phys. Polon. B 34 (2003) 3103 [hep-ph/0304122] [SPIRES].ADSGoogle Scholar
  32. [32]
    F. Hautmann, Endpoint singularities in unintegrated parton distributions, Phys. Lett. B 655 (2007) 26 [hep-ph/0702196] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    J. Chay, Transverse-momentum-dependent parton distribution function in soft-collinear effective theory, arXiv:0711.4295 [SPIRES].
  34. [34]
    I.O. Cherednikov and N.G. Stefanis, Wilson lines and transverse-momentum dependent parton distribution functions: A renormalization-group analysis, Nucl. Phys. B 802 (2008) 146 [arXiv:0802.2821] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    I.O. Cherednikov, A.I. Karanikas and N.G. Stefanis, Wilson lines in transverse-momentum dependent parton distribution functions with spin degrees of freedom, Nucl. Phys. B 840 (2010) 379 [arXiv:1004.3697] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    J.C. Collins and D.E. Soper, Back-To-Back Jets: Fourier Transform from B to K-Transverse, Nucl. Phys. B 197 (1982) 446 [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    A. Bacchetta, D. Boer, M. Diehl and P.J. Mulders, Matches and mismatches in the descriptions of semi-inclusive processes at low and high transverse momentum, JHEP 08 (2008) 023 [arXiv:0803.0227] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    P. Hägler, B.U. Musch, J.W. Negele and A. Schäfer, Intrinsic quark transverse momentum in the nucleon from lattice QCD, Europhys. Lett. 88 (2009) 61001 [arXiv:0908.1283] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    B.U. Musch, P. Hägler, J.W. Negele and A. Schäfer, Exploring quark transverse momentum distributions with lattice QCD, Phys. Rev. D 83 (2011) 094507 [arXiv:1011.1213] [SPIRES].ADSGoogle Scholar
  40. [40]
    J.C. Collins, Leading-twist Single-transverse-spin asymmetries: Drell-Yan and Deep-Inelastic Scattering, Phys. Lett. B 536 (2002) 43 [hep-ph/0204004] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    Z.-B. Kang, B.-W. Xiao and F. Yuan, QCD Resummation for Single Spin Asymmetries, arXiv:1106.0266 [SPIRES].
  42. [42]
    J.-w. Qiu and G.F. Sterman, Single transverse spin asymmetries, Phys. Rev. Lett. 67 (1991) 2264 [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    Z.-B. Kang and J.-W. Qiu, Evolution of twist-3 multi-parton correlation functions relevant to single transverse-spin asymmetry, Phys. Rev. D 79 (2009) 016003 [arXiv:0811.3101] [SPIRES].ADSGoogle Scholar
  44. [44]
    J. Zhou, F. Yuan and Z.-T. Liang, QCD Evolution of the Transverse Momentum Dependent Correlations, Phys. Rev. D 79 (2009) 114022 [arXiv:0812.4484] [SPIRES].ADSGoogle Scholar
  45. [45]
    W. Vogelsang and F. Yuan, Next-to-leading Order Calculation of the Single Transverse Spin Asymmetry in the Drell-Yan Process, Phys. Rev. D 79 (2009) 094010 [arXiv:0904.0410] [SPIRES].ADSGoogle Scholar
  46. [46]
    V.M. Braun, A.N. Manashov and B. Pirnay, On the scale dependence of twist-three contributions to single spin asymmetries, Phys. Rev. D 80 (2009) 114002 [arXiv:0909.3410] [SPIRES].ADSGoogle Scholar
  47. [47]
    P.G. Ratcliffe and O. Teryaev, Non-Universality and Evolution of the Sivers Function, Mod. Phys. Lett. A 24 (2009) 2984 [arXiv:0910.5348] [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    J. Zhou, F. Yuan and Z.-T. Liang, Hyperon Polarization in Unpolarized Scattering Processes, Phys. Rev. D 78 (2008) 114008 [arXiv:0808.3629] [SPIRES].ADSGoogle Scholar
  49. [49]
    J. Zhou, F. Yuan and Z.-T. Liang, Transverse momentum dependent quark distributions and polarized Drell-Yan processes, Phys. Rev. D 81 (2010) 054008 [arXiv:0909.2238] [SPIRES].ADSGoogle Scholar
  50. [50]
    F. Yuan and J. Zhou, Collins Fragmentation and the Single Transverse Spin Asymmetry, Phys. Rev. Lett. 103 (2009) 052001 [arXiv:0903.4680] [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    Z.-B. Kang, QCD evolution of naive-time-reversal-odd fragmentation functions, Phys. Rev. D 83 (2011) 036006 [arXiv:1012.3419] [SPIRES].ADSGoogle Scholar
  52. [52]
    M. Burkardt, Chromodynamic lensing and transverse single spin asymmetries, Nucl. Phys. A 735 (2004) 185 [hep-ph/0302144] [SPIRES].ADSCrossRefGoogle Scholar
  53. [53]
    P. Hägler, Hadron structure from lattice quantum chromodynamics, Phys. Rept. 490 (2010) 49 [arXiv:0912.5483] [SPIRES].ADSCrossRefGoogle Scholar
  54. [54]
    V.S. Dotsenko and S.N. Vergeles, Renormalizability of Phase Factors in the Nonabelian Gauge Theory, Nucl. Phys. B 169 (1980) 527 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    N.S. Craigie and H. Dorn, On the renormalization and short distance properties of hadronic operators in QCD, Nucl. Phys. B 185 (1981) 204 [SPIRES].ADSCrossRefGoogle Scholar
  56. [56]
    I.Y. Arefeva, Quantum contour field equations, Phys. Lett. B 93 (1980) 347 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    S. Aoyama, The renormalization of the string operator in QCD, Nucl. Phys. B 194 (1982) 513 [SPIRES].ADSCrossRefGoogle Scholar
  58. [58]
    N.G. Stefanis, Gauge invariant quark two-point green’s function through connector insertion to \( \mathcal{O}\left( {{\alpha_s}} \right) \), Nuovo Cim. A 83 (1984) 205 [SPIRES].ADSCrossRefGoogle Scholar
  59. [59]
    H. Dorn, Renormalization of path ordered phase factors and related hadron operators in gauge field theories, Fortsch. Phys. 34 (1986) 11 [SPIRES].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • D. Boer
    • 1
  • L. Gamberg
    • 2
  • B. U. Musch
    • 3
  • A. Prokudin
    • 3
  1. 1.Theory group, KVIUniversity of GroningenGroningenThe Netherlands
  2. 2.Division of SciencePenn State University-BerksReadingU.S.A.
  3. 3.Jefferson LabNewport NewsU.S.A.

Personalised recommendations