Constructing generalized self-dual strings

Article

Abstract

We generalize a recently developed ADHMN-like construction of self-dual string solitons using loop space. In particular, we present two extensions: The first one starts from solutions to the Basu-Harvey equation for the ABJM model, the second one starts from solutions to a corresponding BPS equation in an \( \mathcal{N} = 2 \) supersymmetric deformation of the BLG model. Both constructions yield solutions to the abelian and the nonabelian self-dual string equation transgressed to loop space. These equations might provide an effective description of M2-branes suspended between M5-branes.

Keywords

Integrable Equations in Physics String Duality M-Theory 

References

  1. [1]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    S. Mukhi and C. Papageorgakis, M2 to D2, JHEP 05 (2008) 085 [arXiv:0803.3218] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [SPIRES].ADSMATHCrossRefGoogle Scholar
  6. [6]
    E. Corrigan and P. Goddard, Construction of instanton and monopole solutions and reciprocity, Ann. Phys. 154 (1984) 253 [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    P.J. Braam and P. van Baal, Nahm’s transformation for instantons, Commun. Math. Phys. 122 (1989) 267 [SPIRES].ADSMATHCrossRefGoogle Scholar
  8. [8]
    W. Nahm, A simple formalism for the BPS monopole, Phys. Lett. B 90 (1980) 413 [SPIRES].ADSGoogle Scholar
  9. [9]
    W. Nahm, All selfdual multi-monopoles for arbitrary gauge groups, presented at Internation summer institute on theoretical physics, August 31–September 11, Freiburg, Germany (1981).Google Scholar
  10. [10]
    W. Nahm, The construction of all selfdual multi-monopoles by the ADHM method, talk at the Meeting on monopoles in quantum field theory, December 11–15, ICTP, Trieste (1981).Google Scholar
  11. [11]
    N.J. Hitchin, On the construction of monopoles, Commun. Math. Phys. 89 (1983) 145 [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  12. [12]
    A. Basu and J.A. Harvey, The M2–M5 brane system and a generalized Nahm’s equation, Nucl. Phys. B 713 (2005) 136 [hep-th/0412310] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    P.S. Howe, N.D. Lambert and P.C. West, The self-dual string soliton, Nucl. Phys. B 515 (1998) 203 [hep-th/9709014] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    A. Gustavsson, Selfdual strings and loop space Nahm equations, JHEP 04 (2008) 083 [arXiv:0802.3456] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    C. Sämann, Constructing self-dual strings, Commun. Math. Phys. 305 (2011) 513 [arXiv:1007.3301] [SPIRES].ADSMATHCrossRefGoogle Scholar
  16. [16]
    S. Kawamoto and N. Sasakura, Open membranes in a constant C-field background and noncommutative boundary strings, JHEP 07 (2000) 014 [hep-th/0005123] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    E. Bergshoeff, D.S. Berman, J.P. van der Schaar and P. Sundell, A noncommutative M-theory five-brane, Nucl. Phys. B 590 (2000) 173 [hep-th/0005026] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    A. Gustavsson, The non-Abelian tensor multiplet in loop space, JHEP 01 (2006) 165 [hep-th/0512341] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    C. Papageorgakis and C. Sämann, The 3-Lie algebra (2, 0) tensor multiplet and equations of motion on loop space, JHEP 05 (2011) 099 [arXiv:1103.6192] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    N. Lambert and C. Papageorgakis, Nonabelian (2, 0) tensor multiplets and 3-algebras, JHEP 08 (2010) 083 [arXiv:1007.2982] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    J. Bagger and N. Lambert, Three-algebras and N = 6 Chern-Simons gauge theories, Phys. Rev. D 79 (2009) 025002 [arXiv:0807.0163] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    S.A. Cherkis and C. Sämann, Multiple M2-branes and generalized 3-Lie algebras, Phys. Rev. D 78 (2008) 066019 [arXiv:0807.0808] [SPIRES].ADSGoogle Scholar
  23. [23]
    C.Sämann and R.J. Szabo, Branes, quantization and fuzzy spheres, PoS(CNCFG2010)005 [arXiv:1101.5987] [SPIRES].
  24. [24]
    D.-E. Diaconescu, D-branes, monopoles and Nahm equations, Nucl. Phys. B 503 (1997) 220 [hep-th/9608163] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    D. Tsimpis, Nahm equations and boundary conditions, Phys. Lett. B 433 (1998) 287 [hep-th/9804081] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    N.R. Constable, R.C. Myers and O. Tafjord, The noncommutative bion core, Phys. Rev. D 61 (2000) 106009 [hep-th/9911136] [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    P. Rossi, Exact results in the theory of nonabelian magnetic monopoles, Phys. Rept. 86 (1982) 317 [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    M. Adler and P. van Moerbeke, Linearization of hamiltonian systems, Jacobi varieties and representation theory, Adv. Math. 38 (1980) 318. MATHCrossRefGoogle Scholar
  29. [29]
    L. Takhtajan, On foundation of the generalized Nambu mechanics (second version), Commun. Math. Phys. 160 (1994) 295 [hep-th/9301111] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  30. [30]
    D. Nogradi, M2-branes stretching between M5-branes, JHEP 01 (2006) 010 [hep-th/0511091] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    M. Pawellek, On a generalization of Jacobi’s elliptic functions and the double sine-Gordon kink chain, arXiv:0909.2026 [SPIRES].
  32. [32]
    J.-L. Brylinski, Loop spaces, characteristic classes and geometric quantization, Birkhäuser, Boston U.S.A. (2007).Google Scholar
  33. [33]
    S. Cherkis, V. Dotsenko and C. Sämann, On superspace actions for multiple M2-branes, metric 3-algebras and their classification, Phys. Rev. D 79 (2009) 086002 [arXiv:0812.3127] [SPIRES].ADSGoogle Scholar
  34. [34]
    J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, A massive study of M2-brane proposals, JHEP 09 (2008) 113 [arXiv:0807.1074] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    S. Terashima, On M5-branes in N = 6 membrane action, JHEP 08 (2008) 080 [arXiv:0807.0197] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    K. Hanaki and H. Lin, M2–M5 systems in N = 6 Chern-Simons theory, JHEP 09 (2008) 067 [arXiv:0807.2074] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    V.T. Filippov, n-Lie algebras, Sib. Mat. Zh. 26 (1985) 126. MATHGoogle Scholar
  38. [38]
    P. de Medeiros, J. Figueroa-O’Farrill, E. Mendez-Escobar and P. Ritter, On the Lie-algebraic origin of metric 3-algebras, Commun. Math. Phys. 290 (2009) 871 [arXiv:0809.1086] [SPIRES].ADSMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Maxwell Institute for Mathematical SciencesHeriot-Watt UniversityRiccartonU.K.

Personalised recommendations