Advertisement

Gluon-gluon contributions to W + W production and Higgs interference effects

  • John M. Campbell
  • R. Keith Ellis
  • Ciaran Williams
Open Access
Article

Abstract

In this paper we complete our re-assessment of the production of W boson pairs at the LHC, by calculating analytic results for the \( gg \to {W^{+} }{W^{-} } \to \nu {l^{+} }{l^{-} }\bar{\nu } \) process including the effect of massive quarks circulating in the loop. Together with the one-loop amplitudes containing the first two generations of massless quarks propagating in the loop, these diagrams can give a significant contribution with a large flux of gluons. One of the component parts of this calculation is the production of a standard model Higgs boson, gg → H and its subsequent decay, \( H \to {W^{+} }\left( { \to \nu {l^{+} }} \right){W^{-} }\left( { \to {l^{-} }\bar{\nu }} \right) \). We will quantify the importance of the interference between the Higgs boson production process and the gluon-induced continuum production in the context of searches for the Higgs boson at the Tevatron and the LHC. For instance, for m H  < 140 GeV the effect of the interference typically results in around a 10% reduction in the expected number of Higgs signal events. The majority of this interference is due to non-resonant contributions. Therefore cuts on the transverse mass such as those currently used by the ATLAS collaboration reduce the destructive interference to about a 1% effect. We advocate that a cut on the maximum transverse mass be used in future Higgs searches in this channel.

Keywords

Higgs Physics NLO Computations 

References

  1. [1]
    CMS collaboration, S. Chatrchyan et al., Measurement of WW Production and Search for the Higgs Boson in pp Collisions at \( \sqrt {s} = 7 \) TeV, Phys. Lett. B 699 (2011) 25 [arXiv:1102.5429] [SPIRES].ADSGoogle Scholar
  2. [2]
    CDF and D0 collaboration, T. Aaltonen et al., Combined CDF and D0 Upper Limits on Standard Model Higgs Boson Production with up to 8.2fb −1 of Data, arXiv:1103.3233 [SPIRES].
  3. [3]
    ATLAS collaboration, G. Aad et al., Limits on the production of the Standard Model Higgs Boson in pp collisions at \( \sqrt {s} = 7 \) TeV with the ATLAS detector, arXiv:1106.2748 [SPIRES].
  4. [4]
    M. Dittmar and H.K. Dreiner, How to find a Higgs boson with a mass between 155 GeV–180 GeV at the LHC, Phys. Rev. D 55 (1997) 167 [hep-ph/9608317] [SPIRES].ADSGoogle Scholar
  5. [5]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    C. Anastasiou, K. Melnikov and F. Petriello, Higgs boson production at hadron colliders: Differential cross sections through next-to-next-to-leading order, Phys. Rev. Lett. 93 (2004) 262002 [hep-ph/0409088] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    C. Anastasiou, G. Dissertori and F. Stockli, NNLO QCD predictions for the H → WW → ll νν signal at the LHC, JHEP 09 (2007) 018 [arXiv:0707.2373] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    M. Grazzini, NNLO predictions for the Higgs boson signal in the H → WW → lνlν and H → ZZ → 4 l decay channels, JHEP 02 (2008) 043 [arXiv:0801.3232] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    C. Anastasiou, S. Buhler, F. Herzog and A. Lazopoulos, Total cross-section for Higgs boson hadroproduction with anomalous Standard Model interactions, arXiv:1107.0683 [SPIRES].
  12. [12]
    LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [SPIRES].
  13. [13]
    T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced W-boson pair production at the LHC, JHEP 12 (2006) 046 [hep-ph/0611170] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    E.W.N. Glover and J.J. van der Bij, Vector boson pair production via gluon fusion, Phys. Lett. B 219 (1989) 488 [SPIRES].ADSGoogle Scholar
  15. [15]
    E.W.N. Glover and J.J. van der Bij, Z boson pair production via gluon fusion, Nucl. Phys. B 321 (1989) 561 [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    L.J. Dixon and M.S. Siu, Resonance-continuum interference in the di-photon Higgs signal at the LHC, Phys. Rev. Lett. 90 (2003) 252001 [hep-ph/0302233] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    L.J. Dixon and Y. Sofianatos, Resonance-Continuum Interference in Light Higgs Boson Production at a Photon Collider, Phys. Rev. D 79 (2009) 033002 [arXiv:0812.3712] [SPIRES].ADSGoogle Scholar
  18. [18]
    J.R. Andersen, J.M. Smillie, T. Binoth and G. Heinrich, Loop induced interference effects in Higgs Boson plus two jet production at the LHC, JHEP 02 (2008) 057 [arXiv:0709.3513] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    R.W. Brown and K.O. Mikaelian, W + W and Z 0 Z 0 Pair Production in e + e pp, \( p\bar{p} \) Colliding Beams, Phys. Rev. D 19 (1979) 922 [SPIRES].ADSGoogle Scholar
  20. [20]
    J. Ohnemus, An Order α s calculation of hadronic W W + production, Phys. Rev. D 44 (1991) 1403 [SPIRES].ADSGoogle Scholar
  21. [21]
    S. Frixione, A Next-to-leading order calculation of the cross-section for the production of W + W pairs in hadronic collisions, Nucl. Phys. B 410 (1993) 280 [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    J. Ohnemus, Hadronic ZZ, W W + and W ± Z production with QCD corrections and leptonic decays, Phys. Rev. D 50 (1994) 1931 [hep-ph/9403331] [SPIRES].ADSGoogle Scholar
  23. [23]
    L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for O(α s ) production of W + W , W ± Z, ZZ, W ± γ, or Zγ pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [SPIRES].ADSGoogle Scholar
  25. [25]
    L.J. Dixon, Z. Kunszt and A. Signer, Vector boson pair production in hadronic collisions at order α s : Lepton correlations and anomalous couplings, Phys. Rev. D 60 (1999) 114037 [hep-ph/9907305] [SPIRES].ADSGoogle Scholar
  26. [26]
    J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    D.A. Dicus, C. Kao and W.W. Repko, Gluon production of gauge boson, Phys. Rev. D 36 (1987) 1570 [SPIRES].ADSGoogle Scholar
  28. [28]
    T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced WW background to Higgs boson searches at the LHC, JHEP 03 (2005) 065 [hep-ph/0503094] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    Z. Bern, L.J. Dixon and D.A. Kosower, One-loop amplitudes for e + e to four partons, Nucl. Phys. B 513 (1998) 3 [hep-ph/9708239] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    J.M. Campbell, R.K. Ellis and G. Zanderighi, Next-to-leading order predictions for WW + jet distributions at the LHC, JHEP 12 (2007) 056 [arXiv:0710.1832] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    R.K. Ellis, W.T. Giele, Z. Kunszt and K. Melnikov, Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys. B 822 (2009) 270 [arXiv:0806.3467] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    P. Mastrolia, Double-Cut of Scattering Amplitudes and Stokes’ Theorem, Phys. Lett. B 678 (2009) 246 [arXiv:0905.2909] [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev. D 75 (2007) 125019 [arXiv:0704.1835] [SPIRES].MathSciNetADSGoogle Scholar
  36. [36]
    R.K. Ellis, W.J. Stirling and B.R. Webber, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. Vol. 8: QCD and collider physics, Cambridge University Press, Cambridge U.K. (1996).Google Scholar
  37. [37]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  38. [38]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    M.H. Seymour, The Higgs boson line shape and perturbative unitarity, Phys. Lett. B 354 (1995) 409 [hep-ph/9505211] [SPIRES].ADSGoogle Scholar
  40. [40]
    CDF collaboration, Search for H → WW production at CDF using 4.8fb −1 of data, CDF note 9887 (2009).Google Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • John M. Campbell
    • 1
  • R. Keith Ellis
    • 1
  • Ciaran Williams
    • 1
  1. 1.FermilabBataviaU.S.A.

Personalised recommendations