Einstein branes

  • Wissam Chemissany
  • Bert Janssen
  • Thomas Van Riet
Article

Abstract

We generalise the standard, flat p-brane solutions sourced by a dilaton and a form field, by taking the worldvolume to be a curved Einstein space, such as (anti-)de Sitter space. Our method is based on reducing the p-branes to domain walls and then allowing these domain walls to be curved. For de Sitter worldvolumes this extends some recently constructed warped de Sitter non-compactifications. We restrict our analysis to solutions that possess scaling behavior and demonstrate that these scaling solutions are near-horizon limits of a more general solution. Finally, our framework can equally be used for spacelike branes and the uplift of the domain wall/cosmology correspondence becomes in this context a more general time like/space like brane correspondence.

Keywords

Flux compactifications p-branes dS vacua in string theory Intersecting branes models 

References

  1. [1]
    A. Dabholkar, G.W. Gibbons, J.A. Harvey and F. Ruiz Ruiz, Superstrings and solitons, Nucl. Phys. B 340 (1990) 33 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    C. Callan, J. Harvey and A. Strominger, W orldsheet approach to heterotic instantons and solitons, Nucl. Phys. B 359 (1991) 611.MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    M.J. Duff and J.X.Lü, Remarks on string/five-brane duality, Nucl. Phys. B 354 (1991) 129 [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    M.J. Duff and K.S. Stelle, Multi-membrane solutions of D = 11 supergravity, Phys. Lett. B 253 (1991) 113 [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    R. Güven, Black p-brane solutions of D = 11 supergravity theory, Phys. Lett. B 276 (1992) 49 [SPIRES].ADSGoogle Scholar
  6. [6]
    J. Polchinski, Dirichlet-Branes and Ramond-Ramond Charges, Phys. Rev. Lett. 75 (1995) 4724 [hep-th/9510017] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    H. Lü, C.N. Pope, E. Sezgin and K.S. Stelle, Stainless super p-branes, Nucl. Phys. B 456 (1995) 669 [hep-th/9508042] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    E. Bergshoeff, p-branes, D-branes and M-branes, hep-th/9611099 [SPIRES].
  9. [9]
    D. Brecher and M.J. Perry, Ricci-flat branes, Nucl. Phys. B 566 (2000) 151 [hep-th/9908018] [SPIRES].MathSciNetCrossRefGoogle Scholar
  10. [10]
    B. Janssen, Curved branes and cosmological (a,b)-models, JHEP 01 (2000) 044 [hep-th/9910077] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    J.M. Figueroa-O’Farrill, More Ricci-flat branes, Phys. Lett. B 471 (1999) 128 [hep-th/9910086] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    S. Kachru, M.B. Schulz and E. Silverstein, Bounds on curved domain walls in 5 d gravity, Phys. Rev. D 62 (2000) 085003 [hep-th/0002121] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    N. Alonso-Alberca, P. Meessen and T. Ortín, Supersymmetric brane-worlds, Phys. Lett. B 482 (2000) 400 [hep-th/0003248] [SPIRES].ADSGoogle Scholar
  14. [14]
    N. Alonso-Alberca, B. Janssen and P.J. Silva, Curved dilatonic brane-worlds and the cosmological constant problem, Class. Quant. Grav. 17 (2000) L163 [hep-th/0005116] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    K. Behrndt, G. Lopes Cardoso and D. Lüst, Curved BPS domain wall solutions in four-dimensional N = 2 supergravity, Nucl. Phys. B 607 (2001) 391 [hep-th/0102128] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    A.H. Chamseddine, W.A. Sabra, Einstein Brane-Worlds In 5D Gauged Supergravity, Phys. Lett. B 517 (2001) 184 [Erratum ibid B 537 (2002) 353] [hep-th/0106092] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    A.H. Chamseddine and W.A. Sabra, Curved domain walls of five dimensional gauged supergravity, Nucl. Phys. B 630 (2002) 326 [hep-th/0105207] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    K. Behrndt and M. Cvetiˇc, Bent BPS domain walls of D =5 N =2 gauged supergravity coupled to hypermultiplets, Phys. Rev. D 65 (2002) 126007 [hep-th/0201272] [SPIRES].ADSGoogle Scholar
  19. [19]
    S.L. Cacciatori, D. Klemm and W.A. Sabra, Supersymmetric domain walls and strings in D =5 gauged supergravity coupled to vector multiplets, JHEP 03 (2003) 023 [hep-th/0302218] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    R.C. Fonseca, F.A. Brito and L. Losano, 4D gravity on a non-BPS bent dilatonic brane, arXiv:1106.5719 [SPIRES].
  21. [21]
    D. Bazeia, F.A. Brito and L. Losano, Scalar fields, bent branes and RG flow, JHEP 11 (2006) 064 [hep-th/0610233] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    J. Sonner and P.K. Townsend, Dilaton domain walls and dynamical systems, Class. Quant. Grav. 23 (2006) 441 [hep-th/0510115] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  23. [23]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  24. [24]
    M.R. Douglas and R. Kallosh, Compactification on negatively curved manifolds, JHEP 06 (2010) 004 [arXiv:1001.4008] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    J. Blaback et al., Smeared versus localised sources in flux compactifications, JHEP 12 (2010) 043 [arXiv:1009.1877] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    J. Blaback et al., The problematic backreaction of SUSY-breaking branes, JHEP 08 (2011) 105 [arXiv:1105.4879] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    K. Skenderis and P.K. Townsend, Hidden supersymmetry of domain walls and cosmologies, Phys. Rev. Lett. 96 (2006) 191301 [hep-th/0602260] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    K. Skenderis and P.K. Townsend, Pseudo-supersymmetry and the domain-wall/cosmology correspondence, J. Phys. A 40 (2007) 6733 [hep-th/0610253] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    M. Gutperle and A. Strominger, Space-like branes, JHEP 04 (2002) 018 [hep-th/0202210] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    B. Janssen, P. Smyth, T. Van Riet and B. Vercnocke, A first-order formalism for timelike and spacelike brane solutions, JHEP 04 (2008) 007 [arXiv:0712.2808] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    K. Skenderis, P.K. Townsend and A. Van Proeyen, Domain-wall/Cosmology correspondence in AdS/dS supergravity, JHEP 08 (2007) 036 [arXiv:0704.3918] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    E.A. Bergshoeff, J. Hartong, A. Ploegh, J. Rosseel and D. Van den Bleeken, Pseudo-supersymmetry and a tale of alternate realities, JHEP 07 (2007) 067 [arXiv:0704.3559] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    A. Collinucci, M. Nielsen and T. Van Riet, Scalar cosmology with multi-exponential potentials, Class. Quant. Grav. 22 (2005) 1269 [hep-th/0407047] [SPIRES].ADSMATHCrossRefGoogle Scholar
  34. [34]
    J. Hartong, A. Ploegh, T. Van Riet and D.B. Westra, Dynamics of generalized assisted inflation, Class. Quant. Grav. 23 (2006) 4593 [gr-qc/0602077] [SPIRES].ADSMATHCrossRefGoogle Scholar
  35. [35]
    I.P. Neupane, Warped compactification on curved manifolds, Class. Quant. Grav. 28 (2011) 125015 [arXiv:1006.4495] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    I.P. Neupane, Warped compactification to de Sitter space, Nucl. Phys. B 847 (2011) 549 [arXiv:1011.5007] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    M. Minamitsuji and K. Uzawa, Warped de Sitter compactifications, arXiv:1103.5326 [SPIRES].
  38. [38]
    E. Bergshoeff, W. Chemissany, A. Ploegh, M. Trigiante and T. Van Riet, Generating Geodesic Flows and Supergravity Solutions, Nucl. Phys. B 812 (2009) 343 [arXiv:0806.2310] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    P. Breitenlohner, D. Maison and G.W. Gibbons, Four-Dimensional Black Holes from Kaluza-Klein Theories, Commun. Math. Phys. 120 (1988) 295 [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  40. [40]
    W. Chemissany et al., Black holes in supergravity and integrability, JHEP 09 (2010) 080 [arXiv:1007.3209] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    E. Bergshoeff, W. Chemissany, A. Ploegh and T. Van Riet, Geodesic flows in cosmology, J. Phys. Conf. Ser. 110 (2008) 102002 [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Wissam Chemissany
    • 1
  • Bert Janssen
    • 2
  • Thomas Van Riet
    • 3
  1. 1.Afdeling Theoretische FysicaKatholieke Universiteit LeuvenHeverleeBelgium
  2. 2.Departamento de Física Teórica y del Cosmos and Centro Andaluz de Física de Partículas ElementalesUniversidad de GranadaGranadaSpain
  3. 3.Institutionen för fysik och astronomiUppsala UniversitetUppsalaSweden

Personalised recommendations