Advertisement

Journal of High Energy Physics

, 2010:110 | Cite as

On the fermionic T-duality of the AdS 4 × CP3 sigma-model

  • Ido AdamEmail author
  • Amit Dekel
  • Yaron Oz
Article

Abstract

In this note we consider a fermionic T-duality of the coset realization of the type IIA sigma-model on \( Ad{S_4} \times \mathbb{C}{{\text{P}}^3} \) with respect to the three flat directions in AdS 4, six of the fermionic coordinates and three of the \( \mathbb{C}{{\text{P}}^3} \) directions. We show that the Buscher procedure fails as it leads to a singular transformation and discuss the result and its implications.

Keywords

Duality in Gauge Field Theories String Duality 

References

  1. [1]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, \( \mathcal{N} = 6 \) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    A. Agarwal, N. Beisert and T. McLoughlin, Scattering in mass-deformed N ≥ 4 Chern-Simons models, JHEP 06 (2009) 045 [arXiv:0812.3367] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    T. Bargheer, F. Loebbert and C. Meneghelli, Symmetries of tree-level scattering amplitudes in \( \mathcal{N} = 6 \) superconformal Chern-Simons theory, Phys. Rev. D 82 (2010) 045016 [arXiv:1003.6120] [SPIRES].ADSGoogle Scholar
  4. [4]
    J.M. Henn, J. Plefka and K. Wiegandt, Light-like polygonal Wilson loops in 3D Chern-Simons and ABJM theory, JHEP 08 (2010) 032 [arXiv:1004.0226] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    S. Lee, Yangian invariant scattering amplitudes in supersymmetric Chern-Simons theory, arXiv:1007.4772 [SPIRES].
  6. [6]
    Y.-T. Huang and A.E. Lipstein, Dual superconformal symmetry of \( \mathcal{N} = 6 \) Chern-Simons theory, arXiv:1008.0041 [SPIRES].
  7. [7]
    N. Berkovits and J. Maldacena, Fermionic T-duality, dual superconformal symmetry and the amplitude/Wilson loop connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    N. Beisert, R. Ricci, A.A. Tseytlin and M. Wolf, Dual superconformal symmetry from AdS 5 × S 5 superstring integrability, Phys. Rev. D 78 (2008) 126004 [arXiv:0807.3228] [SPIRES]. MathSciNetADSGoogle Scholar
  9. [9]
    N. Beisert, T-duality, dual conformal symmetry and integrability for strings on AdS 5 × S 5, Fortsch. Phys. 57 (2009) 329 [arXiv:0903.0609] [SPIRES].zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    B. Stefanski jr., Green-Schwarz action for type IIA strings on \( Ad{S_4} \times \mathbb{C}{{\text{P}}^3} \), Nucl. Phys. B 808 (2009) 80 [arXiv:0806.4948] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    G. Arutyunov and S. Frolov, Superstrings on \( Ad{S_4} \times \mathbb{C}{{\text{P}}^3} \) as a coset σ-model, JHEP 09 (2008) 129 [arXiv:0806.4940] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    I. Adam, A. Dekel and Y. Oz, On integrable backgrounds self-dual under fermionic T-duality, JHEP 04 (2009) 120 [arXiv:0902.3805] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    P.A. Grassi, D. Sorokin and L. Wulff, Simplifying superstring and D-brane actions in \( Ad{S_4} \times \mathbb{C}{{\text{P}}^3} \) superbackground, JHEP 08 (2009) 060 [arXiv:0903.5407] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    T.H. Buscher, A symmetry of the string background field equations, Phys. Lett. B 194 (1987) 59 [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    T.H. Buscher, Path integral derivation of quantum duality in nonlinear σ-models, Phys. Lett. B 201 (1988) 466 [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    J. Gomis, D. Sorokin and L. Wulff, The complete \( Ad{S_4} \times \mathbb{C}{{\text{P}}^3} \) superspace for the type IIA superstring and D-branes, JHEP 03 (2009) 015 [arXiv:0811.1566] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)GolmGermany
  2. 2.Raymond and Beverly Sackler School of Physics and AstronomyTel-Aviv UniversityRamat-AvivIsrael

Personalised recommendations