Journal of High Energy Physics

, 2010:104 | Cite as

Interplay of LFV and slepton mass splittings at the LHC as a probe of the SUSY seesaw

  • A. Abada
  • A. J. R. Figueiredo
  • J. C. RomãoEmail author
  • A. M. Teixeira
Open Access


We study the impact of a type-I SUSY seesaw concerning lepton flavour violation (LFV) both at low-energies and at the LHC. The study of the di-lepton invariant mass distribution at the LHC allows to reconstruct some of the masses of the different sparticles involved in a decay chain. In particular, the combination with other observables renders feasible the reconstruction of the masses of the intermediate sleptons involved in \( \chi_2^0 \to \tilde{\ell }\ell \to \ell \ell \chi_1^0 \) decays. Slepton mass splittings can be either interpreted as a signal of non-universality in the SUSY soft breaking-terms (signalling a deviation from constrained scenarios as the cMSSM) or as being due to the violation of lepton flavour. In the latter case, in addition to these high-energy processes, one expects further low-energy manifestations of LFV such as radiative and three-body lepton decays. Under the assumption of a type-I seesaw as the source of neutrino masses and mixings, all these LFV observables are related. Working in the framework of the cMSSM extended by three right-handed neutrino superfields, we conduct a systematic analysis addressing the simultaneous implications of the SUSY seesaw for both high-and low-energy lepton flavour violation. We discuss how the confrontation of slepton mass splittings as observed at the LHC and low-energy LFV observables may provide important information about the underlying mechanism of LFV.


Supersymmetry Phenomenology 


  1. [1]
    Super-Kamiokande collaboration, S. Fukuda et al., Determination of solar neutrino oscillation parameters using 1496 days of Super-Kamiokande-I data, Phys. Lett. B 539 (2002) 179 [hep-ex/0205075] [SPIRES].ADSGoogle Scholar
  2. [2]
    SNO collaboration, Q.R. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    KamLAND collaboration, K. Eguchi et al., First results from KamLAND: evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    T. Kajita, Atmospheric neutrinos, New J. Phys. 6 (2004) 194 [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    K2K collaboration, M.H. Ahn et al., Measurement of neutrino oscillation by the K2K experiment, Phys. Rev. D 74 (2006) 072003 [hep-ex/0606032] [SPIRES].ADSGoogle Scholar
  7. [7]
    MINOS collaboration, P. Adamson et al., Measurement of neutrino oscillations with the MINOS detectors in the NuMI beam, Phys. Rev. Lett. 101 (2008) 131802 [arXiv:0806.2237] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    KamLAND collaboration, S. Abe et al., Precision measurement of neutrino oscillation parameters with KamLAND, Phys. Rev. Lett. 100 (2008) 221803 [arXiv:0801.4589] [SPIRES]. ADSCrossRefGoogle Scholar
  9. [9]
    M. Raidal et al., Flavour physics of leptons and dipole moments, Eur. Phys. J. C 57 (2008) 13 [arXiv:0801.1826] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    MEGA collaboration, M.L. Brooks et al., New limit for the family-number non-conserving decay μ + → e ± γ, Phys. Rev. Lett. 83 (1999) 1521 [hep-ex/9905013] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    BABAR collaboration, B. Aubert et al., Search for lepton flavor violation in the decay τ ±e ± γ, Phys. Rev. Lett. 96 (2006) 041801 [hep-ex/0508012] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    BABAR collaboration, B. Aubert et al., Search for lepton flavor violation in the decay τ → μγ, Phys. Rev. Lett. 95 (2005) 041802 [hep-ex/0502032] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    SINDRUM collaboration, U. Bellgardt et al., Search for the decay μ +e + e + e , Nucl. Phys. B 299 (1988) 1 [SPIRES]. ADSCrossRefGoogle Scholar
  14. [14]
    BABAR collaboration, B. Aubert et al., Search for lepton flavor violation in the decay τ + , Phys. Rev. Lett. 92 (2004) 121801 [hep-ex/0312027] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    SuperKEKB Physics Working Group collaboration,A.G.Akeroydet al., Physics at super B factory, hep-ex/0406071 [SPIRES].
  16. [16]
    J. Aysto et al., Physics with low-energy muons at a neutrino factory complex, hep-ph/0109217 [SPIRES].
  17. [17]
    Y. Kuno, PRISM/PRIME, Nucl. Phys. (Proc. Suppl.) 149 (2005) 376 [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    M. Bona et al., SuperB: a high-luminosity asymmetric e + e super flavor factory. Conceptual design report, arXiv:0709.0451 [SPIRES].
  19. [19]
    MEG collaboration, O.A. Kiselev, Positron spectrometer of MEG experiment at PSI, Nucl. Instrum. Meth. A 604 (2009) 304 [SPIRES].ADSGoogle Scholar
  20. [20]
    MEG collaboration, S. Ritt, Status of the MEG experiment μ → eγ, Nucl. Phys. (Proc. Suppl.) B 162 (2006) 279 [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    PRIME working group collaboration, The PRIME working group, search for the μ → e conversion process at an ultimate sensitivity of the order of 1018 with PRISM, unpublished, Letters of Intent for Nuclear and Particle Physics Experiments at the J-PARC 50GeV PS, LOI-25,
  22. [22]
    Belle collaboration, K. Hayasaka et al., New search for τ → μγ and τ → eγ decays at Belle, Phys. Lett. B 666 (2008) 16 [arXiv:0705.0650] [SPIRES].ADSGoogle Scholar
  23. [23]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    D. Larson et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: power spectra and WMAP-derived parameters, arXiv:1001.4635 [SPIRES].
  26. [26]
    P. Minkowski, μ → eγ at a rate of one out of 1 billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].ADSGoogle Scholar
  27. [27]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. Van. Nieuwenhuizen and D.Z. Freedman eds., North-Holland, Amsterdam, The Netherlands (1979), pg. 315 [PRINT-80-0576 (CERN)] [SPIRES]Google Scholar
  28. [28]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, in Proceedings of the workshop on the unified theory and the baryon number in the universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba, Japan (1979), pg. 95 [SPIRES].Google Scholar
  29. [29]
    S.L. Glashow, The future of elementary particle physics, in Quarks and leptons, M. Lévy et al. eds., Plenum Press, New York, U.S.A. (1980), pg. 687 [NATO Adv. Study Inst. Ser. B Phys. 59 (1980) 687] [SPIRES].Google Scholar
  30. [30]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    R. Barbieri, D.V. Nanopolous, G. Morchio and F. Strocchi, Neutrino masses in grand unified theories, Phys. Lett. B 90 (1980) 91 [SPIRES].ADSGoogle Scholar
  32. [32]
    R.E. Marshak and R.N. Mohapatra, Selection rules for baryon number nonconservation in gauge models, invited talk given at Orbis Scientiae, Coral Gables, U.S.A. January 14–17 1980, VPI-HEP-80/02 [SPIRES].
  33. [33]
    T.P. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [SPIRES].ADSGoogle Scholar
  34. [34]
    M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94 (1980) 61 [SPIRES].ADSGoogle Scholar
  35. [35]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [SPIRES].ADSGoogle Scholar
  37. [37]
    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [SPIRES].ADSGoogle Scholar
  38. [38]
    E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [SPIRES].Google Scholar
  40. [40]
    F. Borzumati and A. Masiero, Large muon and electron number violations in supergravity theories, Phys. Rev. Lett. 57 (1986) 961 [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    L.J. Hall, V.A. Kostelecky and S. Raby, New flavor violations in supergravity models, Nucl. Phys. B 267 (1986) 415 [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    J.F. Donoghue, H.P. Nilles and D. Wyler, Flavor changes in locally supersymmetric theories, Phys. Lett. B 128 (1983) 55 [SPIRES].ADSGoogle Scholar
  43. [43]
    T. Schwetz, M.A. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].ADSCrossRefGoogle Scholar
  44. [44]
    M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ 13 > 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [SPIRES].ADSCrossRefGoogle Scholar
  45. [45]
    J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton-flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [SPIRES].ADSGoogle Scholar
  46. [46]
    J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi and T. Yanagida, Lepton flavor violation in the supersymmetric standard model with seesaw induced neutrino masses, Phys. Lett. B 357 (1995) 579 [hep-ph/9501407] [SPIRES].ADSGoogle Scholar
  47. [47]
    J. Hisano and D. Nomura, Solar and atmospheric neutrino oscillations and lepton flavor violation in supersymmetric models with the right-handed neutrinos, Phys. Rev. D 59 (1999) 116005 [hep-ph/9810479] [SPIRES].ADSGoogle Scholar
  48. [48]
    W. Buchmüller, D. Delepine and F. Vissani, Neutrino mixing and the pattern of supersymmetry breaking, Phys. Lett. B 459 (1999) 171 [hep-ph/9904219] [SPIRES].ADSGoogle Scholar
  49. [49]
    Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265] [SPIRES].ADSCrossRefGoogle Scholar
  50. [50]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μ → eγ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    S. Lavignac, I. Masina and C.A. Savoy, τ → μγ and μ → eγ as probes of neutrino mass models, Phys. Lett. B 520 (2001) 269 [hep-ph/0106245] [SPIRES].ADSGoogle Scholar
  52. [52]
    X.-J. Bi and Y.-B. Dai, Lepton flavor violation and its constraints on the neutrino mass models, Phys. Rev. D 66 (2002) 076006 [hep-ph/0112077] [SPIRES].ADSGoogle Scholar
  53. [53]
    J.R. Ellis, J. Hisano, M. Raidal and Y. Shimizu, A new parametrization of the seesaw mechanism and applications in supersymmetric models, Phys. Rev. D 66 (2002) 115013 [hep-ph/0206110] [SPIRES].ADSGoogle Scholar
  54. [54]
    F. Deppisch, H. Pas, A. Redelbach, R. Ruckl and Y. Shimizu, Probing the Majorana mass scale of right-handed neutrinos in mSUGRA, Eur. Phys. J. C 28 (2003) 365 [hep-ph/0206122] [SPIRES].ADSGoogle Scholar
  55. [55]
    T. Fukuyama, T. Kikuchi and N. Okada, Lepton flavor violating processes and muon g-2 in minimal supersymmetric SO(10) model, Phys. Rev. D 68 (2003) 033012 [hep-ph/0304190] [SPIRES].ADSGoogle Scholar
  56. [56]
    A. Brignole and A. Rossi, Anatomy and phenomenology of μτ lepton flavour violation in the MSSM, Nucl. Phys. B 701 (2004) 3 [hep-ph/0404211] [SPIRES].ADSCrossRefGoogle Scholar
  57. [57]
    A. Masiero, S.K. Vempati and O. Vives, Massive neutrinos and flavour violation, New J. Phys. 6 (2004) 202 [hep-ph/0407325] [SPIRES].ADSCrossRefGoogle Scholar
  58. [58]
    T. Fukuyama, A. Ilakovac and T. Kikuchi, Lepton flavour violating leptonic/semileptonic decays of charged leptons in the minimal supersymmetric standard model, Eur. Phys. J. C 56 (2008) 125 [hep-ph/0506295] [SPIRES].ADSCrossRefGoogle Scholar
  59. [59]
    S.T. Petcov, W. Rodejohann, T. Shindou and Y. Takanishi, The see-saw mechanism, neutrino Yukawa couplings, LFV decays l il j + γ and leptogenesis, Nucl. Phys. B 739 (2006) 208 [hep-ph/0510404] [SPIRES].ADSCrossRefGoogle Scholar
  60. [60]
    E. Arganda and M.J. Herrero, Testing supersymmetry with lepton flavor violating τ and μ decays, Phys. Rev. D 73 (2006) 055003 [hep-ph/0510405] [SPIRES].ADSGoogle Scholar
  61. [61]
    F. Deppisch, H. Pas, A. Redelbach and R. Ruckl, Constraints on SUSY seesaw parameters from leptogenesis and lepton flavor violation, Phys. Rev. D 73 (2006) 033004 [hep-ph/0511062] [SPIRES].ADSGoogle Scholar
  62. [62]
    C.E. Yaguna, Constraining mSUGRA parameters with μ → eγ and μ-e conversion in nuclei, Int. J. Mod. Phys. A 21 (2006) 1283 [hep-ph/0502014] [SPIRES].ADSGoogle Scholar
  63. [63]
    L. Calibbi, A. Faccia, A. Masiero and S.K. Vempati, Lepton flavour violation from SUSY-GUTs: where do we stand for MEG, PRISM/PRIME and a super flavour factory, Phys. Rev. D 74 (2006) 116002 [hep-ph/0605139] [SPIRES].ADSGoogle Scholar
  64. [64]
    S. Antusch, E. Arganda, M.J. Herrero and A.M. Teixeira, Impact of θ 13 on lepton flavour violating processes within SUSY seesaw, JHEP 11 (2006) 090 [hep-ph/0607263] [SPIRES].ADSCrossRefGoogle Scholar
  65. [65]
    M. Hirsch, J.W.F. Valle, W. Porod, J.C. Romao and A. Villanova del Moral, Probing minimal supergravity in type-I seesaw with lepton flavour violation at the LHC, Phys. Rev. D 78 (2008) 013006 [arXiv:0804.4072] [SPIRES].ADSGoogle Scholar
  66. [66]
    E. Arganda, M.J. Herrero and A.M. Teixeira, μ-e conversion in nuclei within the CMSSM seesaw: universality versus non-universality, JHEP 10 (2007) 104 [arXiv:0707.2955] [SPIRES]. ADSCrossRefGoogle Scholar
  67. [67]
    E. Arganda, M.J. Herrero and J. Portoles, Lepton flavour violating semileptonic τ decays in constrained MSSM-seesaw scenarios, JHEP 06 (2008) 079 [arXiv:0803.2039] [SPIRES].ADSCrossRefGoogle Scholar
  68. [68]
    Y. Okada, K.-I. Okumura and Y. Shimizu, μ → eγ and μ → 3e processes with polarized muons and supersymmetric grand unified theories, Phys. Rev. D 61 (2000) 094001 [hep-ph/9906446] [SPIRES].ADSGoogle Scholar
  69. [69]
    J.R. Ellis, J. Hisano, S. Lola and M. Raidal, CP violation in the minimal supersymmetric seesaw model, Nucl. Phys. B 621 (2002) 208 [hep-ph/0109125] [SPIRES].ADSCrossRefGoogle Scholar
  70. [70]
    J.R. Ellis, J. Hisano, M. Raidal and Y. Shimizu, Lepton electric dipole moments in non-degenerate supersymmetric seesaw models, Phys. Lett. B 528 (2002) 86 [hep-ph/0111324] [SPIRES].ADSGoogle Scholar
  71. [71]
    I. Masina, Lepton electric dipole moments from heavy states Yukawa couplings, Nucl. Phys. B 671 (2003) 432 [hep-ph/0304299] [SPIRES].ADSCrossRefGoogle Scholar
  72. [72]
    N. Arkani-Hamed, H.-C. Cheng, J.L. Feng and L.J. Hall, Probing lepton flavor violation at future colliders, Phys. Rev. Lett. 77 (1996) 1937 [hep-ph/9603431] [SPIRES].ADSCrossRefGoogle Scholar
  73. [73]
    I. Hinchliffe and F.E. Paige, Lepton flavor violation at the LHC, Phys. Rev. D 63 (2001) 115006 [hep-ph/0010086] [SPIRES].ADSGoogle Scholar
  74. [74]
    D.F. Carvalho, J.R. Ellis, M.E. Gomez, S. Lola and J.C. Romao, τ flavour violation in sparticle decays at the LHC, Phys. Lett. B 618 (2005) 162 [hep-ph/0206148] [SPIRES].ADSGoogle Scholar
  75. [75]
    E. Carquin, J. Ellis, M.E. Gomez, S. Lola and J. Rodriguez-Quintero, Search for τ flavour violation at the LHC, JHEP 05 (2009) 026 [arXiv:0812.4243] [SPIRES].ADSCrossRefGoogle Scholar
  76. [76]
    F.E. Paige, Determining SUSY particle masses at LHC, in the proceedings of 1996 DPF/DPB Summer Study on New Directions for High-Energy Physics (Snowmass 96), Snowmass U.S.A. June 25–July 12 1996 [hep-ph/9609373] [SPIRES].
  77. [77]
    I. Hinchliffe, F.E. Paige, M.D. Shapiro, J. Soderqvist and W. Yao, Precision SUSY measurements at CERN LHC, Phys. Rev. D 55 (1997) 5520 [hep-ph/9610544] [SPIRES].ADSGoogle Scholar
  78. [78]
    H. Bachacou, I. Hinchliffe and F.E. Paige, Measurements of masses in SUGRA models at CERN LHC, Phys. Rev. D 62 (2000) 015009 [hep-ph/9907518] [SPIRES].ADSGoogle Scholar
  79. [79]
    CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: physics performance, J. Phys. G 34 (2007) 995 [SPIRES].ADSGoogle Scholar
  80. [80]
    ATLAS collaboration, W.W. Armstrong et al., ATLAS: technical proposal for a general-purpose pp experiment at the Large Hadron Collider at CERN, CERN-LHCC-94-43, Cern, Geneva, Switzerland (1994) [SPIRES].Google Scholar
  81. [81]
    ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment — detector, trigger and physics, arXiv:0901.0512 [SPIRES].
  82. [82]
    J. Hisano, M.M. Nojiri, Y. Shimizu and M. Tanaka, Lepton flavor violation in the left-handed slepton production at future lepton colliders, Phys. Rev. D 60 (1999) 055008 [hep-ph/9808410] [SPIRES].ADSGoogle Scholar
  83. [83]
    G.A. Blair, W. Porod and P.M. Zerwas, The reconstruction of supersymmetric theories at high energy scales, Eur. Phys. J. C 27 (2003) 263 [hep-ph/0210058] [SPIRES].ADSGoogle Scholar
  84. [84]
    M.R. Buckley and H. Murayama, How can we test seesaw experimentally?, Phys. Rev. Lett. 97 (2006) 231801 [hep-ph/0606088] [SPIRES].ADSCrossRefGoogle Scholar
  85. [85]
    A.J. Buras, L. Calibbi and P. Paradisi, Slepton mass-splittings as a signal of LFV at the LHC, JHEP 06 (2010) 042 [arXiv:0912.1309] [SPIRES].ADSCrossRefGoogle Scholar
  86. [86]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [SPIRES].ADSGoogle Scholar
  87. [87]
    B.C. Allanach, C.G. Lester, M.A. Parker and B.R. Webber, Measuring sparticle masses in non-universal string inspired models at the LHC, JHEP 09 (2000) 004 [hep-ph/0007009] [SPIRES].ADSCrossRefGoogle Scholar
  88. [88]
    A. Bartl et al., Test of lepton flavour violation at LHC, Eur. Phys. J. C 46 (2006) 783 [hep-ph/0510074] [SPIRES].ADSCrossRefGoogle Scholar
  89. [89]
    B.C. Allanach, J.P. Conlon and C.G. Lester, Measuring smuon-selectron mass splitting at the CERN LHC and patterns of supersymmetry breaking, Phys. Rev. D 77 (2008) 076006 [arXiv:0801.3666] [SPIRES].ADSGoogle Scholar
  90. [90]
    A. Abada, C. Biggio, F. Bonnet, M.B. Gavela and T. Hambye, Low energy effects of neutrino masses, JHEP 12 (2007) 061 [arXiv:0707.4058] [SPIRES].ADSCrossRefGoogle Scholar
  91. [91]
    B. Pontecorvo, Mesonium and antimesonium, Sov. Phys. JETP 6 (1957) 429 [Zh. Eksp. Teor. Fiz. 33 (1957) 549] [SPIRES]. ADSGoogle Scholar
  92. [92]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [SPIRES].zbMATHADSCrossRefGoogle Scholar
  93. [93]
    S.P. Martin, A supersymmetry primer, hep-ph/9709356 [SPIRES].
  94. [94]
    Y. Grossman and H.E. Haber, Sneutrino mixing phenomena, Phys. Rev. Lett. 78 (1997) 3438 [hep-ph/9702421] [SPIRES].ADSCrossRefGoogle Scholar
  95. [95]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [SPIRES].ADSCrossRefGoogle Scholar
  96. [96]
    R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002 [Erratum ibid. D 76 (2007) 059902] [hep-ph/0203110] [SPIRES].ADSGoogle Scholar
  97. [97]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES]. ADSGoogle Scholar
  98. [98]
    D. Glenzinski, The Mu2e experiment at Fermilab, A IP Conf. Proc. 1222 (2010) 383 [SPIRES].ADSGoogle Scholar
  99. [99]
    COMET collaboration, Y.G. Cui et al., Conceptual design report for experimental search for lepton flavor violating μ -e conversion at sensitivity of 10−16 with a slow-extracted bunched proton beam (COMET), KEK-2009-10, Japan (2009) [SPIRES].
  100. [100]
    D. DeMille, S. Bickman, P. Hamilton, Y. Jiang, V. Prasad, D. Kawall and R. Paolino, Search for the electron electric dipole moment, AIP Conf. Proc. 842 (2006) 759 [SPIRES].ADSCrossRefGoogle Scholar
  101. [101]
    EDM collaboration, J-PARC Letter Of Intent: search for a permanent muon electric dipole moment at the 10−24 e∙cm level, manuscript available from
  102. [102]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [SPIRES].ADSGoogle Scholar
  103. [103]
    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [SPIRES].ADSCrossRefGoogle Scholar
  104. [104]
    J.R. Ellis, J.E. Kim and D.V. Nanopoulos, Cosmological gravitino regeneration and decay, Phys. Lett. B 145 (1984) 181 [SPIRES].ADSGoogle Scholar
  105. [105]
    S. Antusch and A.M. Teixeira, Towards constraints on the SUSY seesaw from flavour-dependent leptogenesis, JCAP 02 (2007) 024 [hep-ph/0611232] [SPIRES].ADSGoogle Scholar
  106. [106]
    E. Nardi, Y. Nir, E. Roulet and J. Racker, The importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [SPIRES].ADSCrossRefGoogle Scholar
  107. [107]
    A. Abada et al., Flavour matters in leptogenesis, JHEP 09 (2006) 010 [hep-ph/0605281] [SPIRES].ADSCrossRefGoogle Scholar
  108. [108]
    A. Abada, S. Davidson, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavour issues in leptogenesis, JCAP 04 (2006) 004 [hep-ph/0601083] [SPIRES].ADSGoogle Scholar
  109. [109]
    S. Davidson, J. Garayoa, F. Palorini and N. Rius, CP violation in the SUSY seesaw: leptogenesis and low energy, JHEP 09 (2008) 053 [arXiv:0806.2832] [SPIRES].ADSCrossRefGoogle Scholar
  110. [110]
    J.R. Ellis and M. Raidal, Leptogenesis and the violation of lepton number and CP at low energies, Nucl. Phys. B 643 (2002) 229 [hep-ph/0206174] [SPIRES].ADSCrossRefGoogle Scholar
  111. [111]
    S.T. Petcov and T. Shindou, Charged lepton decays l i → l j + γ, leptogenesis CP-violating parameters and Majorana phases, Phys. Rev. D 74 (2006) 073006 [hep-ph/0605151] [SPIRES].ADSGoogle Scholar
  112. [112]
    F.R. Joaquim, I. Masina and A. Riotto, Observable electron EDM and leptogenesis, Int. J. Mod. Phys. A 22 (2007) 6253 [hep-ph/0701270] [SPIRES].ADSGoogle Scholar
  113. [113]
    S. Blanchet, D. Marfatia and A. Mustafayev, Examining leptogenesis with lepton flavor violation and the dark matter abundance, arXiv:1006.2857 [SPIRES].
  114. [114]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs2.1, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [SPIRES].ADSCrossRefGoogle Scholar
  115. [115]
    W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the PROduction of Supersymmetric Particles In Next-to-leading Order QCD, hep-ph/9611232 [SPIRES].
  116. [116]
    W. Beenakker et al., The production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett. 83 (1999) 3780 [Erratum ibid. 100 (2008) 029901] [hep-ph/9906298] [SPIRES].ADSCrossRefGoogle Scholar
  117. [117]
    T. Hahn, CUBA: a library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [SPIRES].zbMATHADSCrossRefGoogle Scholar
  118. [118]
    LEP Working Group for Higgs boson searches collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [SPIRES].ADSGoogle Scholar
  119. [119]
    R. Assmann et al., LHC beam parameters for the physics run at 3.5 TeV, LHC-OP-ES-0020, Cern, Geneva, Switzerland (2010).Google Scholar
  120. [120]
    B.C. Allanach, A. Djouadi, J.L. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP 09 (2004) 044 [hep-ph/0406166] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • A. Abada
    • 1
  • A. J. R. Figueiredo
    • 2
  • J. C. Romão
    • 2
    Email author
  • A. M. Teixeira
    • 3
  1. 1.Laboratoire de Physique ThéoriqueCNRS — UMR 8627Orsay CedexFrance
  2. 2.Centro de Física Teórica de PartículasInstituto Superior TécnicoLisboaPortugal
  3. 3.Laboratoire de Physique CorpusculaireCNRS/IN2P3 — UMR 6533Aubière CedexFrance

Personalised recommendations