Minimal conformal technicolor and precision electroweak tests

  • Jared A. Evans
  • Jamison Galloway
  • Markus A. LutyEmail author
  • Ruggero Altair Tacchi
Open Access


We study the minimal model of conformal technicolor, an SU(2) gauge theory near a strongly coupled conformal fixed point, with conformal symmetry softly broken by technifermion mass terms. Conformal symmetry breaking triggers chiral symmetry breaking in the pattern SU(4) → Sp(4), which gives rise to a pseudo-Nambu-Goldstone boson that can act as a composite Higgs boson. The top quark is elementary, and the top and electroweak gauge loop contributions to the Higgs mass are cut off entirely by Higgs compositeness. In particular, the model requires no top partners and no “little Higgs” mechanism. A nontrivial vacuum alignment results from the interplay of the top loop and technifermion mass terms. The composite Higgs mass is completely determined by the top loop, in the sense that m h /m t is independent of the vacuum alignment and is computable by a strong-coupling calculation. There is an additional composite pseudoscalar A with mass larger than m h and suppressed direct production at LHC. We discuss the electroweak fit in this model in detail. Corrections to \( Z \to \bar{b}b \) and the T parameter from the top sector are suppressed by the enhanced Sp(4) custodial symmetry. Even assuming that the strong contribution to the S parameter is positive and usuppressed, a good electroweak fit can be obtained for v/f ≲ 0.25, where v and f are the electroweak and chiral symmetry breaking scales respectively. This requires fine tuning at the 10% level.


Beyond Standard Model Technicolor and Composite Models 


  1. [1]
    M.A. Luty and T. Okui, Conformal technicolor, JHEP 09 (2006) 070 [hep-ph/0409274] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    M.A. Luty, Strong conformal dynamics at the LHC and on the lattice, JHEP 04 (2009) 050 [arXiv:0806.1235] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    B. Holdom and J. Terning, Large corrections to electroweak parameters in technicolor theories, Phys. Lett. B 247 (1990) 88 [SPIRES].ADSGoogle Scholar
  4. [4]
    M. Golden and L. Randall, Radiative corrections to electroweak parameters in technicolor theories, Nucl. Phys. B 361 (1991) 3 [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].ADSGoogle Scholar
  6. [6]
    A. Manohar and H. Georgi, Chiral quarks and the nonrelativistic quark model, Nucl. Phys. B 234 (1984) 189 [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    C. Csáki, C. Grojean, L. Pilo and J. Terning, Towards a realistic model of Higgsless electroweak symmetry breaking, Phys. Rev. Lett. 92 (2004) 101802 [hep-ph/0308038] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    H. Davoudiasl, J.L. Hewett, B. Lillie and T.G. Rizzo, Higgsless electroweak symmetry breaking in warped backgrounds: constraints and signatures, Phys. Rev. D 70 (2004) 015006 [hep-ph/0312193] [SPIRES].ADSGoogle Scholar
  9. [9]
    G. Burdman and Y. Nomura, Holographic theories of electroweak symmetry breaking without a Higgs boson, Phys. Rev. D 69 (2004) 115013 [hep-ph/0312247] [SPIRES].ADSGoogle Scholar
  10. [10]
    R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    K. Agashe, C. Cs´aki, C. Grojean and M. Reece, The S-parameter in holographic technicolor models, JHEP 12 (2007) 003 [arXiv:0704.1821] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [SPIRES].ADSGoogle Scholar
  13. [13]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [SPIRES].ADSGoogle Scholar
  14. [14]
    H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984) 216 [SPIRES].ADSGoogle Scholar
  15. [15]
    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    E. Katz, A.E. Nelson and D.G.E. Walker, The intermediate Higgs, JHEP 08 (2005) 074 [hep-ph/0504252] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the minimal composite Higgs model, JHEP 04 (2009) 070 [arXiv:0902.1483] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    J.A. Evans and M.A. Luty, Strong electroweak symmetry breaking and spin 0 resonances, Phys. Rev. Lett. 103 (2009) 101801 [arXiv:0904.2182] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D 20 (1979) 2619 [SPIRES].ADSGoogle Scholar
  22. [22]
    S. Weinberg, Implications of dynamical symmetry breaking, Phys. Rev. D 13 (1976) 974 [SPIRES].ADSGoogle Scholar
  23. [23]
    S. Weinberg, Implications of dynamical symmetry breaking: an addendum, Phys. Rev. D 19 (1979) 1277 [SPIRES].ADSGoogle Scholar
  24. [24]
    Y. Iwasaki, K. Kanaya, S. Kaya, S. Sakai and T. Yoshie, Phase structure of lattice QCD for general number of flavors, Phys. Rev. D 69 (2004) 014507 [hep-lat/0309159] [SPIRES].ADSGoogle Scholar
  25. [25]
    J. Braun and H. Gies, Running coupling at finite temperature and chiral symmetry restoration in QCD, Phys. Lett. B 645 (2007) 53 [hep-ph/0512085] [SPIRES].ADSGoogle Scholar
  26. [26]
    T. Appelquist, G.T. Fleming and E.T. Neil, Lattice study of the conformal window in QCD-like theories, Phys. Rev. Lett. 100 (2008) 171607 [Erratum ibid. 102 (2009) 149902] [arXiv:0712.0609] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    T. Appelquist, G.T. Fleming and E.T. Neil, Lattice study of conformal behavior in SU(3) Yang-Mills theories, Phys. Rev. D 79 (2009) 076010 [arXiv:0901.3766] [SPIRES].ADSGoogle Scholar
  28. [28]
    A. Deuzeman, M.P. Lombardo and E. Pallante, The physics of eight flavours, Phys. Lett. B 670 (2008) 41 [arXiv:0804.2905] [SPIRES].ADSGoogle Scholar
  29. [29]
    A. Deuzeman, M.P. Lombardo and E. Pallante, Evidence for a conformal phase in SU(N) gauge theories, arXiv:0904.4662 [SPIRES].
  30. [30]
    A. Deuzeman, M.P. Lombardo and E. Pallante, Traces of a fixed point: unravelling the phase diagram at large N f, arXiv:0911.2207 [SPIRES].
  31. [31]
    Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C. Schroeder, Chiral symmetry breaking in nearly conformal gauge theories, arXiv:0911.2463 [SPIRES].
  32. [32]
    T. Appelquist, A. Ratnaweera, J. Terning and L.C.R. Wijewardhana, The phase structure of an SU(N) gauge theory with N f flavors, Phys. Rev. D 58 (1998) 105017 [hep-ph/9806472] [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    T. Banks and A. Zaks, On the phase structure of vector-like gauge theories with massless fermions, Nucl. Phys. B 196 (1982) 189 [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    T. Appelquist, M. Einhorn, T. Takeuchi and L.C.R. Wijewardhana, Higher mass scales and mass hierarchies, Phys. Lett. B 220 (1989) 223 [SPIRES].ADSGoogle Scholar
  35. [35]
    R.S. Chivukula, A.G. Cohen and K.D. Lane, Aspects of dynamical electroweak symmetry breaking, Nucl. Phys. B 343 (1990) 554 [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    C.T. Hill, Topcolor: Top quark condensation in a gauge extension of the standard model, Phys. Lett. B 266 (1991) 419 [SPIRES].ADSGoogle Scholar
  37. [37]
    C.T. Hill, Topcolor assisted technicolor, Phys. Lett. B 345 (1995) 483 [hep-ph/9411426] [SPIRES].ADSGoogle Scholar
  38. [38]
    B. Holdom, Techniodor, Phys. Lett. B 150 (1985) 301 [SPIRES].ADSGoogle Scholar
  39. [39]
    T.W. Appelquist, D. Karabali and L.C.R. Wijewardhana, Chiral hierarchies and the flavor changing neutral current problem in technicolor, Phys. Rev. Lett. 57 (1986) 957 [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    K. Yamawaki, M. Bando and K.-i. Matumoto, Scale invariant technicolor model and a technidilaton, Phys. Rev. Lett. 56 (1986) 1335 [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    T. Appelquist and L.C.R. Wijewardhana, Chiral hierarchies and chiral perturbations in technicolor, Phys. Rev. D 35 (1987) 774 [SPIRES].ADSGoogle Scholar
  42. [42]
    T. Appelquist and L.C.R. Wijewardhana, Chiral hierarchies from slowly running couplings in technicolor theories, Phys. Rev. D 36 (1987) 568 [SPIRES].ADSGoogle Scholar
  43. [43]
    S. Samuel, Bosonic technicolor, Nucl. Phys. B 347 (1990) 625 [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    M. Dine, A. Kagan and S. Samuel, Naturalness in supersymmetry, or raising the supersymmetry breaking scale, Phys. Lett. B 243 (1990) 250 [SPIRES].ADSGoogle Scholar
  45. [45]
    E.H. Simmons, Phenomenology of a technicolor model with heavy scalar doublet, Nucl. Phys. B 312 (1989) 253 [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    C.D. Carone and E.H. Simmons, Oblique corrections in technicolor with a scalar, Nucl. Phys. B 397 (1993) 591 [hep-ph/9207273] [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    T. DeGrand, Finite-size scaling tests for SU(3) lattice gauge theory with color sextet fermions, Phys. Rev. D 80 (2009) 114507 [arXiv:0910.3072] [SPIRES].ADSGoogle Scholar
  48. [48]
    G. Mack, All unitary ray representations of the conformal group SU(2, 2) with positive energy, Commun. Math. Phys. 55 (1977) 1 [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  49. [49]
    B. Grinstein, K.A. Intriligator and I.Z. Rothstein, Comments on Unparticles, Phys. Lett. B 662 (2008) 367 [arXiv:0801.1140] [SPIRES].MathSciNetADSGoogle Scholar
  50. [50]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  51. [51]
    V.S. Rychkov and A. Vichi, Universal constraints on conformal operator dimensions, Phys. Rev. D 80 (2009) 045006 [arXiv:0905.2211] [SPIRES].MathSciNetADSGoogle Scholar
  52. [52]
    M.E. Peskin, The alignment of the vacuum in theories of technicolor, Nucl. Phys. B 175 (1980) 197 [SPIRES].CrossRefADSGoogle Scholar
  53. [53]
    J. Preskill, Subgroup alignment in hypercolor theories, Nucl. Phys. B 177 (1981) 21 [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 [hep-ph/0502182] [SPIRES].CrossRefADSGoogle Scholar
  55. [55]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [SPIRES].CrossRefADSGoogle Scholar
  56. [56]
    J. Erler and P. Langacker, Precision constraints on extra fermion generations, Phys. Rev. Lett. 105 (2010) 031801 [arXiv:1003.3211] [SPIRES].CrossRefADSGoogle Scholar
  57. [57]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological lagrangians. 1, Phys. Rev. 177 (1969) 2239 [SPIRES]. CrossRefADSGoogle Scholar
  58. [58]
    R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Jared A. Evans
    • 1
  • Jamison Galloway
    • 1
  • Markus A. Luty
    • 1
    Email author
  • Ruggero Altair Tacchi
    • 1
  1. 1.Physics DepartmentUniversity of California DavisDavisU.S.A.

Personalised recommendations