Advertisement

Dimension-six terms in the Standard Model Lagrangian

  • B. Grzadkowski
  • M. Iskrzyński
  • M. Misiak
  • J. Rosiek
Open Access
Article

Abstract

When the Standard Model is considered as an effective low-energy theory, higher dimensional interaction terms appear in the Lagrangian. Dimension-six terms have been enumerated in the classical article by Buchmüller and Wyler [3]. Although redundance of some of those operators has been already noted in the literature, no updated complete list has been published to date. Here we perform their classification once again from the outset. Assuming baryon number conservation, we find 15 + 19 + 25 = 59 independent operators (barring flavour structure and Hermitian conjugations), as compared to 16 + 35 + 29 = 80 in ref. [3]. The three summed numbers refer to operators containing 0, 2 and 4 fermion fields. If the assumption of baryon number conservation is relaxed, 5 new operators arise in the four-fermion sector.

Keywords

Standard Model Beyond Standard Model 

References

  1. [1]
    Particle Data Group, K. Nakamura et al., The Review of Particle Physics, J. Phys. G 37 (2010) 075021, http://pdg.lbl.gov.ADSGoogle Scholar
  2. [2]
    T. Appelquist and J. Carazzone, Infrared Singularities and Massive Fields, Phys. Rev. D 11 (1975) 2856} [SPIRES].ADSGoogle Scholar
  3. [3]
    W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    H.D. Politzer, Power Corrections at Short Distances, Nucl. Phys. B 172 (1980) 349 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    H. Kluberg-Stern and J.B. Zuber, Renormalization of Nonabelian Gauge Theories in a Background Field Gauge. 2. Gauge Invariant Operators, Phys. Rev. D 12 (1975) 3159 [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    C. Grosse-Knetter, Effective Lagrangians with higher derivatives and equations of motion, Phys. Rev. D 49 (1994) 6709 [hep-ph/9306321] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    C. Arzt, Reduced effective Lagrangians, Phys. Lett. B 342 (1995) 189 [hep-ph/9304230] [SPIRES].ADSGoogle Scholar
  8. [8]
    H. Simma, Equations of motion for effective Lagrangians and penguins in rare B decays, Z. Phys. C 61 (1994) 67 [hep-ph/9307274] [SPIRES].ADSGoogle Scholar
  9. [9]
    J. Wudka, Electroweak effective Lagrangians, Int. J. Mod. Phys. A 9 (1994) 2301 [hep-ph/9406205] [SPIRES].ADSGoogle Scholar
  10. [10]
    B. Grzadkowski, Z. Hioki, K. Ohkuma and J. Wudka, Probing anomalous top quark couplings induced by dimension-six operators at photon colliders, Nucl. Phys. B 689 (2004) 108 [arXiv:0310159] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    P.J. Fox, Z. Ligeti, M. Papucci, G. Perez and M.D. Schwartz, Deciphering top flavor violation at the LHC with B factories, Phys. Rev. D 78 (2008) 054008 [arXiv:0704.1482] [SPIRES].ADSGoogle Scholar
  12. [12]
    J.A. Aguilar-Saavedra, A minimal set of top anomalous couplings, Nucl. Phys. B 812 (2009) 181 [arXiv:0811.3842] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    J.A. Aguilar-Saavedra, A minimal set of top-Higgs anomalous couplings, Nucl. Phys. B 821 (2009) 215 [arXiv:0904.2387] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    A.A. Belavin, A.M. Polyakov, A.S. Schwartz and Y.S. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B 59 (1975) 85 [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    G. ’t Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle, Phys. Rev. D 14 (1976) 3432 [Erratum ibid. D 18 (1978) 2199] [SPIRES].ADSGoogle Scholar
  16. [16]
    R. Jackiw and C. Rebbi, Vacuum periodicity in a Yang-Mills quantum theory, Phys. Rev. Lett. 37 (1976) 172 [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    C.G. Callan Jr., R.F. Dashen and D.J. Gross, The structure of the gauge theory vacuum, Phys. Lett. B 63 (1976) 334 [SPIRES].ADSGoogle Scholar
  18. [18]
    V. Baluni, CP Violating Effects in QCD, Phys. Rev. D 19 (1979) 2227 [SPIRES].ADSGoogle Scholar
  19. [19]
    R.J. Crewther, P. Di~Vecchia, G. Veneziano and E. Witten, Chiral Estimate of the Electric Dipole Moment of the Neutron in Quantum Chromodynamics, Phys. Lett. B 88 (1979) 123 [Erratum ibid. B 91 (1980) 487] [SPIRES].ADSGoogle Scholar
  20. [20]
    S. Weinberg, Baryon And Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    J.D. Bjorken and S.D. Drell, Relativistic Quantum Mechanics, McGraw-Hill Inc., New York U.S.A. (1964).Google Scholar
  22. [22]
    W. Buchmüller, B. Lampe and N. Vlachos, Contact Interactions and the Callan-Gross Relation, Phys. Lett. B 197 (1987) 379 [SPIRES].ADSGoogle Scholar
  23. [23]
    C. Arzt, M.B. Einhorn and J. Wudka, Patterns of deviation from the standard model, Nucl. Phys. B 433 (1995) 41 [hep-ph/9405214] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    B. Grzadkowski, Z. Hioki and M. Szafranski, Four-Fermi effective operators in top-quark production and decay, Phys. Rev. D 58 (1998) 035002 [hep-ph/9712357] [SPIRES].ADSGoogle Scholar
  25. [25]
    B. Grzadkowski, Four Fermi effective operators at \( {e^{+} }{e^{-} } \to \bar{t}t \), Acta Phys. Polon. B 27 (1996) 921 [hep-ph/9511279] [SPIRES].Google Scholar
  26. [26]
    L.F. Abbott and M.B. Wise, The Effectiv Hamiltonian for Nucleon Decay, Phys. Rev. D 22 (1980) 2208 [SPIRES].ADSGoogle Scholar
  27. [27]
    F. Wilczek and A. Zee, Operator Analysis of Nucleon Decay, Phys. Rev. Lett. 43 (1979) 1571 [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    C.N. Leung, S.T. Love and S. Rao, Low-Energy Manifestations of a New Interaction Scale: Operator Analysis, Z. Phys. C 31 (1986) 433 [SPIRES].ADSGoogle Scholar
  29. [29]
    M. Iskrzyński, Classification of higher-dimensional operators in the Standard Model (in Polish), MSc Thesis, University of Warsaw, 2010.Google Scholar
  30. [30]
    M. Iskrzyński, Corrected classification of higher-dimensional operators in the Standard Model, talk presented at the 17th IMPRS Workshop, Munich Germany (2010), http://indico.mppmu.mpg.de/indico/conferenceDisplay.py?confId=901.
  31. [31]
    B. Grzadkowski and M. Misiak, Anomalous Wtb coupling effects in the weak radiative B- meson decay, Phys. Rev. D 78 (2008) 077501 [arXiv:0802.1413] [SPIRES].ADSGoogle Scholar
  32. [32]
    B. Grzadkowski and J. Wudka, Higgs boson production at e + e colliders: A model independent approach, Phys. Lett. B 364 (1995) 49 [hep-ph/9502415] [SPIRES].ADSGoogle Scholar
  33. [33]
    J.A. Aguilar-Saavedra, Effective four-fermion operators in top physics: a roadmap, arXiv:1008.3562 [SPIRES].
  34. [34]
    Z. Hioki, private communication.Google Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • B. Grzadkowski
    • 1
  • M. Iskrzyński
    • 1
  • M. Misiak
    • 1
    • 2
  • J. Rosiek
    • 1
  1. 1.Institute of Theoretical PhysicsUniversity of WarsawWarsawPoland
  2. 2.Institut für Theoretische TeilchenphysikKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations