Dimension-six terms in the Standard Model Lagrangian


When the Standard Model is considered as an effective low-energy theory, higher dimensional interaction terms appear in the Lagrangian. Dimension-six terms have been enumerated in the classical article by Buchmüller and Wyler [3]. Although redundance of some of those operators has been already noted in the literature, no updated complete list has been published to date. Here we perform their classification once again from the outset. Assuming baryon number conservation, we find 15 + 19 + 25 = 59 independent operators (barring flavour structure and Hermitian conjugations), as compared to 16 + 35 + 29 = 80 in ref. [3]. The three summed numbers refer to operators containing 0, 2 and 4 fermion fields. If the assumption of baryon number conservation is relaxed, 5 new operators arise in the four-fermion sector.


  1. [1]

    Particle Data Group, K. Nakamura et al., The Review of Particle Physics, J. Phys. G 37 (2010) 075021, http://pdg.lbl.gov.

    ADS  Google Scholar 

  2. [2]

    T. Appelquist and J. Carazzone, Infrared Singularities and Massive Fields, Phys. Rev. D 11 (1975) 2856} [SPIRES].

    ADS  Google Scholar 

  3. [3]

    W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [SPIRES].

    Article  ADS  Google Scholar 

  4. [4]

    H.D. Politzer, Power Corrections at Short Distances, Nucl. Phys. B 172 (1980) 349 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. [5]

    H. Kluberg-Stern and J.B. Zuber, Renormalization of Nonabelian Gauge Theories in a Background Field Gauge. 2. Gauge Invariant Operators, Phys. Rev. D 12 (1975) 3159 [SPIRES].

    Article  ADS  Google Scholar 

  6. [6]

    C. Grosse-Knetter, Effective Lagrangians with higher derivatives and equations of motion, Phys. Rev. D 49 (1994) 6709 [hep-ph/9306321] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. [7]

    C. Arzt, Reduced effective Lagrangians, Phys. Lett. B 342 (1995) 189 [hep-ph/9304230] [SPIRES].

    ADS  Google Scholar 

  8. [8]

    H. Simma, Equations of motion for effective Lagrangians and penguins in rare B decays, Z. Phys. C 61 (1994) 67 [hep-ph/9307274] [SPIRES].

    ADS  Google Scholar 

  9. [9]

    J. Wudka, Electroweak effective Lagrangians, Int. J. Mod. Phys. A 9 (1994) 2301 [hep-ph/9406205] [SPIRES].

    ADS  Google Scholar 

  10. [10]

    B. Grzadkowski, Z. Hioki, K. Ohkuma and J. Wudka, Probing anomalous top quark couplings induced by dimension-six operators at photon colliders, Nucl. Phys. B 689 (2004) 108 [arXiv:0310159] [SPIRES].

    Article  ADS  Google Scholar 

  11. [11]

    P.J. Fox, Z. Ligeti, M. Papucci, G. Perez and M.D. Schwartz, Deciphering top flavor violation at the LHC with B factories, Phys. Rev. D 78 (2008) 054008 [arXiv:0704.1482] [SPIRES].

    ADS  Google Scholar 

  12. [12]

    J.A. Aguilar-Saavedra, A minimal set of top anomalous couplings, Nucl. Phys. B 812 (2009) 181 [arXiv:0811.3842] [SPIRES].

    Article  ADS  Google Scholar 

  13. [13]

    J.A. Aguilar-Saavedra, A minimal set of top-Higgs anomalous couplings, Nucl. Phys. B 821 (2009) 215 [arXiv:0904.2387] [SPIRES].

    Article  ADS  Google Scholar 

  14. [14]

    A.A. Belavin, A.M. Polyakov, A.S. Schwartz and Y.S. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B 59 (1975) 85 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. [15]

    G. ’t Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle, Phys. Rev. D 14 (1976) 3432 [Erratum ibid. D 18 (1978) 2199] [SPIRES].

    ADS  Google Scholar 

  16. [16]

    R. Jackiw and C. Rebbi, Vacuum periodicity in a Yang-Mills quantum theory, Phys. Rev. Lett. 37 (1976) 172 [SPIRES].

    Article  ADS  Google Scholar 

  17. [17]

    C.G. Callan Jr., R.F. Dashen and D.J. Gross, The structure of the gauge theory vacuum, Phys. Lett. B 63 (1976) 334 [SPIRES].

    ADS  Google Scholar 

  18. [18]

    V. Baluni, CP Violating Effects in QCD, Phys. Rev. D 19 (1979) 2227 [SPIRES].

    ADS  Google Scholar 

  19. [19]

    R.J. Crewther, P. Di~Vecchia, G. Veneziano and E. Witten, Chiral Estimate of the Electric Dipole Moment of the Neutron in Quantum Chromodynamics, Phys. Lett. B 88 (1979) 123 [Erratum ibid. B 91 (1980) 487] [SPIRES].

    ADS  Google Scholar 

  20. [20]

    S. Weinberg, Baryon And Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [SPIRES].

    Article  ADS  Google Scholar 

  21. [21]

    J.D. Bjorken and S.D. Drell, Relativistic Quantum Mechanics, McGraw-Hill Inc., New York U.S.A. (1964).

    Google Scholar 

  22. [22]

    W. Buchmüller, B. Lampe and N. Vlachos, Contact Interactions and the Callan-Gross Relation, Phys. Lett. B 197 (1987) 379 [SPIRES].

    ADS  Google Scholar 

  23. [23]

    C. Arzt, M.B. Einhorn and J. Wudka, Patterns of deviation from the standard model, Nucl. Phys. B 433 (1995) 41 [hep-ph/9405214] [SPIRES].

    Article  ADS  Google Scholar 

  24. [24]

    B. Grzadkowski, Z. Hioki and M. Szafranski, Four-Fermi effective operators in top-quark production and decay, Phys. Rev. D 58 (1998) 035002 [hep-ph/9712357] [SPIRES].

    ADS  Google Scholar 

  25. [25]

    B. Grzadkowski, Four Fermi effective operators at \( {e^{+} }{e^{-} } \to \bar{t}t \), Acta Phys. Polon. B 27 (1996) 921 [hep-ph/9511279] [SPIRES].

    Google Scholar 

  26. [26]

    L.F. Abbott and M.B. Wise, The Effectiv Hamiltonian for Nucleon Decay, Phys. Rev. D 22 (1980) 2208 [SPIRES].

    ADS  Google Scholar 

  27. [27]

    F. Wilczek and A. Zee, Operator Analysis of Nucleon Decay, Phys. Rev. Lett. 43 (1979) 1571 [SPIRES].

    Article  ADS  Google Scholar 

  28. [28]

    C.N. Leung, S.T. Love and S. Rao, Low-Energy Manifestations of a New Interaction Scale: Operator Analysis, Z. Phys. C 31 (1986) 433 [SPIRES].

    ADS  Google Scholar 

  29. [29]

    M. Iskrzyński, Classification of higher-dimensional operators in the Standard Model (in Polish), MSc Thesis, University of Warsaw, 2010.

  30. [30]

    M. Iskrzyński, Corrected classification of higher-dimensional operators in the Standard Model, talk presented at the 17th IMPRS Workshop, Munich Germany (2010), http://indico.mppmu.mpg.de/indico/conferenceDisplay.py?confId=901.

  31. [31]

    B. Grzadkowski and M. Misiak, Anomalous Wtb coupling effects in the weak radiative B- meson decay, Phys. Rev. D 78 (2008) 077501 [arXiv:0802.1413] [SPIRES].

    ADS  Google Scholar 

  32. [32]

    B. Grzadkowski and J. Wudka, Higgs boson production at e + e colliders: A model independent approach, Phys. Lett. B 364 (1995) 49 [hep-ph/9502415] [SPIRES].

    ADS  Google Scholar 

  33. [33]

    J.A. Aguilar-Saavedra, Effective four-fermion operators in top physics: a roadmap, arXiv:1008.3562 [SPIRES].

  34. [34]

    Z. Hioki, private communication.

Download references

Author information



Corresponding author

Correspondence to M. Misiak.

Additional information

ArXiv ePrint: 1008.4884v2

This paper is based on the MSc thesis of the second author.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Grzadkowski, B., Iskrzyński, M., Misiak, M. et al. Dimension-six terms in the Standard Model Lagrangian. J. High Energ. Phys. 2010, 85 (2010). https://doi.org/10.1007/JHEP10(2010)085

Download citation


  • Standard Model
  • Beyond Standard Model