Journal of High Energy Physics

, 2010:64

Predictions for Higgs production at the Tevatron and the associated uncertainties

Open Access
Article

Abstract

We update the theoretical predictions for the production cross sections of the Standard Model Higgs boson at the Fermilab Tevatron collider, focusing on the two main search channels, the gluon-gluon fusion mechanism ggH and the Higgs-strahlung processes \( q\bar{q} \to VH \) with V = W/Z, including all relevant higher order QCD and electroweak corrections in perturbation theory. We then estimate the various uncertainties affecting these predictions: the scale uncertainties which are viewed as a measure of the unknown higher order effects, the uncertainties from the parton distribution functions and the related errors on the strong coupling constant, as well as the uncertainties due to the use ofan effective theory approach in the determination of the radiative corrections in the ggH process at next-to-next-to-leading order. We find that while the cross sections are well under control in the Higgs-strahlung processes, the theoretical uncertainties are rather large in the case of the gluon-gluon fusion channel, possibly shifting the central values of the next-to-next-to-leading order cross sections by more than ≈ 40%. These uncertainties are thus significantly larger than the ≈ 10% error assumed by the CDF and D0 experiments in their recent analysis that has excluded the Higgs mass range MH = 162–166 GeV at the 95% confidence level. These exclusion limits should be, therefore, reconsidered in the light of these large theoretical uncertainties.

Keywords

Higgs Physics Hadronic Colliders QCD Standard Model 

References

  1. [1]
    P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [SPIRES].ADSGoogle Scholar
  2. [2]
    F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585 [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    P.W. Higgs, Spontaneous symmetry breakdown without massless bosons, Phys. Rev. 145 (1966) 1156 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    CERN bulletin, issue No. 49-50/2009, Cern, Geneva Switzerland (2009) http://cdsweb.cern.ch/journal/CERNBulletin/2009/49/News%20Articles/?ln=en.
  7. [7]
    CDF and D0 collaboration, T. Aaltonen et al., Combination of Tevatron searches for the standard model Higgs boson in the W + W decay mode, Phys. Rev. Lett. 104 (2010) 061802 [arXiv:1001.4162] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    TEVNPH Working group collaboration for CDF and D0 collaboration, Combined CDF and D0 upper limits on standard model Higgs-boson production with 2.15.4 fb −1 of data, arXiv:0911.3930 [SPIRES].
  9. [9]
    LEP Working Group for Higgs boson searches collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [SPIRES].ADSGoogle Scholar
  10. [10]
    J. March-Russell and F. Riva, Signals of inflation in a friendly string landscape, JHEP 07 (2006) 033 [astro-ph/0604254] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY : a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [SPIRES].ADSCrossRefMATHGoogle Scholar
  12. [12]
    J.M. Butterworth et al., The tools and MonteCarlo working group summary report, in Les Houches report of the “Tools and Monte Carlo” working group, A. Djouadi, J. Kalinowski, M.M. Muhlleitner and M. Spira eds., France (2009) [arXiv:1003.1643] [SPIRES].
  13. [13]
    H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs bosons from two gluon annihilation in proton proton collisions, Phys. Rev. Lett. 40 (1978) 692 [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    M. Dittmar and H.K. Dreiner, How to find a Higgs boson with a mass between 155180 GeV at the LHC, Phys. Rev. D 55 (1997) 167 [hep-ph/9608317] [SPIRES].ADSGoogle Scholar
  15. [15]
    A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [SPIRES].ADSGoogle Scholar
  16. [16]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    D. Graudenz, M. Spira and P.M. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, SUSY Higgs production at proton colliders, Phys. Lett. B 318 (1993) 347 [SPIRES].ADSGoogle Scholar
  19. [19]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [SPIRES].ADSCrossRefMATHGoogle Scholar
  21. [21]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft-gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    D. de Florian and M. Grazzini, Higgs production through gluon fusion: updated cross sections at the Tevatron and the LHC, Phys. Lett. B 674 (2009) 291 [arXiv:0901.2427] [SPIRES]. ADSGoogle Scholar
  26. [26]
    C. Anastasiou, G. Dissertori, M. Grazzini, F. Stockli and B.R. Webber, Perturbative QCD effects and the search for a H → WW → ℓνℓν signal at the Tevatron, JHEP 08 (2009) 099 [arXiv:0905.3529] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    C. Anastasiou, R. Boughezal and F. Petriello, Mixed QCD-electroweak corrections to Higgs boson production in gluon fusion, JHEP 04 (2009) 003 [arXiv:0811.3458] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    A. Djouadi and P. Gambino, Leading electroweak correction to Higgs boson production at proton colliders, Phys. Rev. Lett. 73 (1994) 2528 [hep-ph/9406432] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Two-loop light fermion contribution to Higgs production and decays, Phys. Lett. B 595 (2004) 432 [hep-ph/0404071] [SPIRES].ADSGoogle Scholar
  30. [30]
    G. Degrassi and F. Maltoni, Two-loop electroweak corrections to Higgs production at hadron colliders, Phys. Lett. B 600 (2004) 255 [hep-ph/0407249] [SPIRES].ADSGoogle Scholar
  31. [31]
    S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO electroweak corrections to Higgs boson production at hadron colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301] [SPIRES]. ADSGoogle Scholar
  32. [32]
    S. Actis, G. Passarino, C. Sturm and S. Uccirati, NNLO computational techniques: the cases H → γγ and H → gg, Nucl. Phys. B 811 (2009) 182 [arXiv:0809.3667] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    S.L. Glashow, D.V. Nanopoulos and A. Yildiz, Associated production of Higgs bosons and Z particles, Phys. Rev. D 18 (1978) 1724 [SPIRES].ADSGoogle Scholar
  34. [34]
    A. Stange, W.J. Marciano and S. Willenbrock, A ssociated production of Higgs and weak bosons, with \( H \to b\bar{b} \) , at hadron colliders, Phys. Rev. D 50 (1994) 4491 [hep-ph/9404247] [SPIRES].ADSGoogle Scholar
  35. [35]
    G. Altarelli, R.K. Ellis and G. Martinelli, Large perturbative corrections to the Drell-Yan process in QCD, Nucl. Phys. B 157 (1979) 461 [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    J. Kubar-André and F.E. Paige, Gluon corrections to the Drell-Yan model, Phys. Rev. D 19 (1979) 221 [SPIRES].ADSGoogle Scholar
  37. [37]
    T. Han and S. Willenbrock, QCD correction to the pp → WH and ZH total cross-sections, Phys. Lett. B 273 (1991) 167 [SPIRES].ADSGoogle Scholar
  38. [38]
    J. Ohnemus and W.J. Stirling, Order α s corrections to the differential cross-section for the WH intermediate mass Higgs signal, Phys. Rev. D 47 (1993) 2722 [SPIRES].ADSGoogle Scholar
  39. [39]
    A. Djouadi and M. Spira, SUSY-QCD corrections to Higgs boson production at hadron colliders, Phys. Rev. D 62 (2000) 014004 [hep-ph/9912476] [SPIRES].ADSGoogle Scholar
  40. [40]
    O. Brein, A. Djouadi and R. Harlander, NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders, Phys. Lett. B 579 (2004) 149 [hep-ph/0307206] [SPIRES].ADSGoogle Scholar
  41. [41]
    M.L. Ciccolini, S. Dittmaier and M. Krämer, Electroweak radiative corrections to associated WH and ZH production at hadron colliders, Phys. Rev. D 68 (2003) 073003 [hep-ph/0306234] [SPIRES].ADSGoogle Scholar
  42. [42]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    Martin-Stirling-Thorne-Watt parton distribution functions homepage, http://projects.hepforge.org/mstwpdf/.
  44. [44]
    R.S. Thorne, A.D. Martin, W.J. Stirling and G. Watt, The effects of combined HERA and recent Tevatron W → ℓν charge asymmetry data on the MSTW PDFs, arXiv:1006.2753 [SPIRES].
  45. [45]
    O. Brein et al., Precision calculations for associated WH and ZH production at hadron colliders, hep-ph/0402003 [SPIRES].
  46. [46]
    Higgs Working Group collaboration, K.A. Assamagan et al., The Higgs working group: summary report 2003, hep-ph/0406152 [SPIRES].
  47. [47]
    A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, NNLO global parton analysis, Phys. Lett. B 531 (2002) 216 [hep-ph/0201127] [SPIRES].ADSGoogle Scholar
  48. [48]
    D.R.T. Jones and S.T. Petcov, Heavy Higgs bosons at LEP, Phys. Lett. B 84 (1979) 440 [SPIRES].ADSGoogle Scholar
  49. [49]
    R.N. Cahn and S. Dawson, Production of very massive Higgs bosons, Phys. Lett. B 136 (1984) 196 [Erratum ibid. B 138 (1984) 464] [SPIRES].ADSGoogle Scholar
  50. [50]
    K. Hikasa, Self-consistent boundary conditions, Phys. Lett. B 164 (1985) 341.Google Scholar
  51. [51]
    G. Altarelli, B. Mele and F. Pitolli, Heavy Higgs production at future colliders, Nucl. Phys. B 287 (1987) 205 [SPIRES].ADSCrossRefGoogle Scholar
  52. [52]
    T. Han, G. Valencia and S. Willenbrock, Structure function approach to vector boson scattering in pp collisions, Phys. Rev. Lett. 69 (1992) 3274 [hep-ph/9206246] [SPIRES].ADSCrossRefGoogle Scholar
  53. [53]
    T. Figy, C. Oleari and D. Zeppenfeld, Next-to-leading order jet distributions for Higgs boson production via weak-boson fusion, Phys. Rev. D 68 (2003) 073005 [hep-ph/0306109] [SPIRES].ADSGoogle Scholar
  54. [54]
    R. Raitio and W.W. Wada, Higgs boson production at large transverse momentum in QCD, Phys. Rev. D 19 (1979) 941 [SPIRES].ADSGoogle Scholar
  55. [55]
    Z. Kunszt, A ssociated production of heavy Higgs boson with top quarks, Nucl. Phys. B 247 (1984) 339 [SPIRES].ADSCrossRefGoogle Scholar
  56. [56]
    J.N. Ng and P. Zakarauskas, A QCD parton calculation of conjoined production of Higgs bosons and heavy flavors in \( p\bar{p} \) collision, Phys. Rev. D 29 (1984) 876 [SPIRES].ADSGoogle Scholar
  57. [57]
    W. Beenakker et al., Higgs radiation off top quarks at the Tevatron and the LHC, Phys. Rev. Lett. 87 (2001) 201805 [hep-ph/0107081] [SPIRES].ADSCrossRefGoogle Scholar
  58. [58]
    W. Beenakker et al., NLO QCD corrections to \( t\bar{t}H \) production in hadron collisions, Nucl. Phys. B 653 (2003) 151 [hep-ph/0211352] [SPIRES].ADSCrossRefGoogle Scholar
  59. [59]
    L. Reina and S. Dawson, Next-to-leading order results for \( t\bar{t}H \) production at the Tevatron, Phys. Rev. Lett. 87 (2001) 201804 [hep-ph/0107101] [SPIRES].ADSCrossRefGoogle Scholar
  60. [60]
    S. Dawson, L.H. Orr, L. Reina and D. Wackeroth, Associated top quark Higgs boson production at the LHC, Phys. Rev. D 67 (2003) 071503 [hep-ph/0211438] [SPIRES].ADSGoogle Scholar
  61. [61]
    P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [SPIRES].ADSGoogle Scholar
  62. [62]
    CTEQ: the Coordinated Theoretical-Experimental project on QCD homepage, http://www.phys.psu.edu/∼cteq/.
  63. [63]
    S. Alekhin, J. Blumlein, S. Klein and S. Moch, The 3-, 4-and 5-flavor NNLO parton from deep-inelastic-scattering data and at hadron colliders, Phys. Rev. D 81 (2010) 014032 [arXiv:0908.2766] [SPIRES].ADSGoogle Scholar
  64. [64]
    The Nucleon Parton Distribution Functions homepage, https://mail.ihep.ru/∼alekhin/pdfs.html.
  65. [65]
    M. Spira, HIGLU: a program for the calculation of the total Higgs production cross section at hadron colliders via gluon fusion including QCD corrections, hep-ph/9510347 [SPIRES].
  66. [66]
    Programs for SM and MSSM Higgs boson production at hadron colliders, http://people.web.psi.ch/spira/proglist.html.
  67. [67]
    M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [SPIRES].ADSCrossRefGoogle Scholar
  68. [68]
    S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and Higgs boson production, Phys. Lett. B 631 (2005) 48 [hep-ph/0508265] [SPIRES].ADSGoogle Scholar
  69. [69]
    V. Ravindran, Higher-order threshold effects to inclusive processes in QCD, Nucl. Phys. B 752 (2006) 173 [hep-ph/0603041] [SPIRES].ADSCrossRefGoogle Scholar
  70. [70]
    A. Idilbi, X.-D. Ji, J.-P. Ma and F. Yuan, Threshold resummation for Higgs production in effective field theory, Phys. Rev. D 73 (2006) 077501 [hep-ph/0509294] [SPIRES].ADSGoogle Scholar
  71. [71]
    E. Laenen and L. Magnea, Threshold resummation for electroweak annihilation from DIS data, Phys. Lett. B 632 (2006) 270 [hep-ph/0508284] [SPIRES].ADSGoogle Scholar
  72. [72]
    V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-group improved prediction for Higgs production at hadron colliders, Eur. Phys. J. C 62 (2009) 333 [arXiv:0809.4283] [SPIRES].ADSCrossRefGoogle Scholar
  73. [73]
    G. Corcella and L. Magnea, Soft-gluon resummation effects on parton distributions, Phys. Rev. D 72 (2005) 074017 [hep-ph/0506278] [SPIRES].ADSGoogle Scholar
  74. [74]
    V. Ravindran, J. Smith and W.L. van Neerven, Differential cross sections for Higgs production, Mod. Phys. Lett. A 18 (2003) 1721 [hep-ph/0307005] [SPIRES].ADSGoogle Scholar
  75. [75]
    C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [SPIRES].ADSCrossRefGoogle Scholar
  76. [76]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [SPIRES].ADSCrossRefGoogle Scholar
  77. [77]
    C. Anastasiou, S. Bucherer and Z. Kunszt, HPro: a NLO MonteCarlo for Higgs production via gluon fusion with finite heavy quark masses, JHEP 10 (2009) 068 [arXiv:0907.2362] [SPIRES]. ADSCrossRefGoogle Scholar
  78. [78]
    S.D. Drell and T.-M. Yan, Massive lepton pair production in hadron-hadron collisions at high-energies, Phys. Rev. Lett. 25 (1970) 316 [SPIRES].ADSCrossRefGoogle Scholar
  79. [79]
    R. Hamberg, W.L. van Neerven and T. Matsuura, A complete calculation of the order α s 2 correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002) 403] [SPIRES].ADSCrossRefGoogle Scholar
  80. [80]
    M. Ciccolini, A. Denner and S. Dittmaier, Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC, Phys. Rev. D 77 (2008) 013002 [arXiv:0710.4749] [SPIRES].ADSGoogle Scholar
  81. [81]
    Tevatron Electroweak Working Group and CDF and D0 collaboration, Combination of CDF and D0 results on the mass of the top quark, arXiv:0903.2503 [SPIRES].
  82. [82]
    M. Grazzini, Higgs cross section: compute reference SM Higgs production cross sections webpage, http://theory.fi.infn.it/cgi-bin/hresum.pl.
  83. [83]
    U. Aglietti et al., Tevatron for LHC report: Higgs, hep-ph/0612172 [SPIRES].
  84. [84]
    Tev4LHC Higgs working group collaboration, Standard model Higgs cross sections at hadron colliders webpage, http://maltoni.web.cern.ch/maltoni/TeV4LHC/SM.html.
  85. [85]
    A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precise predictions for the Higgs-boson decay H → WW/ZZ → 4 leptons, Phys. Rev. D 74 (2006) 013004 [hep-ph/0604011] [SPIRES].ADSGoogle Scholar
  86. [86]
    A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Radiative corrections to the semileptonic and hadronic Higgs-boson decays H → WW/ZZ → 4 fermions, JHEP 02 (2007) 080 [hep-ph/0611234] [SPIRES].ADSCrossRefGoogle Scholar
  87. [87]
    K. Melnikov and F. Petriello, The W boson production cross section at the LHC through O(α s 2), Phys. Rev. Lett. 96 (2006) 231803 [hep-ph/0603182] [SPIRES].ADSCrossRefGoogle Scholar
  88. [88]
    S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [SPIRES].ADSCrossRefGoogle Scholar
  89. [89]
    J. Ohnemus, An order α s calculation of hadronic W W + production, Phys. Rev. D 44 (1991) 1403 [SPIRES].ADSGoogle Scholar
  90. [90]
    S. Frixione, P. Nason and G. Ridolfi, Strong corrections to WZ production at hadron colliders, Nucl. Phys. B 383 (1992) 3 [SPIRES].ADSCrossRefGoogle Scholar
  91. [91]
    S. Frixione, A next-to-leading order calculation of the cross-section for the production of W + W pairs in hadronic collisions, Nucl. Phys. B 410 (1993) 280 [SPIRES].ADSCrossRefGoogle Scholar
  92. [92]
    U. Baur, T. Han and J. Ohnemus, QCD corrections to hadronic Wγ production with nonstandard WWγ couplings, Phys. Rev. D 48 (1993) 5140 [hep-ph/9305314] [SPIRES].ADSGoogle Scholar
  93. [93]
    L.J. Dixon, Z. Kunszt and A. Signer, Vector boson pair production in hadronic collisions at order α s : lepton correlations and anomalous couplings, Phys. Rev. D 60 (1999) 114037 [hep-ph/9907305] [SPIRES].ADSGoogle Scholar
  94. [94]
    M. Cacciari, S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Updated predictions for the total production cross sections of top and of heavier quark pairs at the Tevatron and at the LHC, JHEP 09 (2008) 127 [arXiv:0804.2800] [SPIRES].ADSCrossRefGoogle Scholar
  95. [95]
    N. Kidonakis and R. Vogt, The theoretical top quark cross section at the Tevatron and the LHC, Phys. Rev. D 78 (2008) 074005 [arXiv:0805.3844] [SPIRES].ADSGoogle Scholar
  96. [96]
    S. Moch and P. Uwer, Theoretical status and prospects for top-quark pair production at hadron colliders, Phys. Rev. D 78 (2008) 034003 [arXiv:0804.1476] [SPIRES].ADSGoogle Scholar
  97. [97]
    S. Dittmaier, M. Krämer and M. Spira, Higgs radiation off bottom quarks at the Tevatron and the LHC, Phys. Rev. D 70 (2004) 074010 [hep-ph/0309204] [SPIRES].ADSGoogle Scholar
  98. [98]
    J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Higgs boson production in association with a single bottom quark, Phys. Rev. D 67 (2003) 095002 [hep-ph/0204093] [SPIRES].ADSGoogle Scholar
  99. [99]
    R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to-leading order, Phys. Rev. D 68 (2003) 013001 [hep-ph/0304035] [SPIRES].ADSGoogle Scholar
  100. [100]
    F. Maltoni, Z. Sullivan and S. Willenbrock, Higgs-boson production via bottom-quark fusion, Phys. Rev. D 67 (2003) 093005 [hep-ph/0301033] [SPIRES].ADSGoogle Scholar
  101. [101]
    J. Campbell et al., Higgs boson production in association with bottom quarks, in The Higgs working group: summary report 2003, Higgs Working Group collaboration, K.A. Assamagan et al., France (2003), pg. 5 [hep-ph/0406152] [SPIRES].
  102. [102]
    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the Higgs production cross section, Nucl. Phys. (Proc. Suppl.) 135 (2004) 35 [hep-ph/0405263] [SPIRES].ADSCrossRefGoogle Scholar
  103. [103]
    R.V. Harlander and W.B. Kilgore, Production of a pseudo-scalar Higgs boson at hadron colliders at next-to-next-to leading order, JHEP 10 (2002) 017 [hep-ph/0208096] [SPIRES].ADSCrossRefGoogle Scholar
  104. [104]
    A. Cafarella, C. Corianò, M. Guzzi and J. Smith, On the scale variation of the total cross section for Higgs production at the LHC and at the Tevatron, Eur. Phys. J. C 47 (2006) 703 [hep-ph/0510179] [SPIRES].ADSCrossRefGoogle Scholar
  105. [105]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [SPIRES].ADSCrossRefGoogle Scholar
  106. [106]
    R.V. Harlander and K.J. Ozeren, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order, JHEP 11 (2009) 088 [arXiv:0909.3420] [SPIRES].ADSCrossRefGoogle Scholar
  107. [107]
    A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [SPIRES].ADSCrossRefGoogle Scholar
  108. [108]
    R.V. Harlander, H. Mantler, S. Marzani and K.J. Ozeren, Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass, Eur. Phys. J. C 66 (2010) 359 [arXiv:0912.2104] [SPIRES].ADSCrossRefGoogle Scholar
  109. [109]
    S. Marzani, R.D. Ball, V. Del Duca, S. Forte and A. Vicini, Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order, Nucl. Phys. B 800 (2008) 127 [arXiv:0801.2544] [SPIRES].ADSCrossRefGoogle Scholar
  110. [110]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Uncertainties on αS in global PDF analyses and implications for predicted hadronic cross sections, Eur. Phys. J. C 64 (2009) 653 [arXiv:0905.3531] [SPIRES].ADSCrossRefGoogle Scholar
  111. [111]
    A. Djouadi and S. Ferrag, PDF uncertainties in Higgs production at hadron colliders, Phys. Lett. B 586 (2004) 345 [hep-ph/0310209] [SPIRES].ADSGoogle Scholar
  112. [112]
    NNPDF collaboration, R.D. Ball et al., Precision determination of electroweak parameters and the strange content of the proton from neutrino deep-inelastic scattering, Nucl. Phys. B 823 (2009) 195 [arXiv:0906.1958] [SPIRES].ADSCrossRefGoogle Scholar
  113. [113]
    P. Jimenez-Delgado and E. Reya, Variable flavor number parton distributions and weak gauge and Higgs boson production at hadron colliders at NNLO of QCD, Phys. Rev. D 80 (2009) 114011 [arXiv:0909.1711] [SPIRES].ADSGoogle Scholar
  114. [114]
    M. Grazzini, QCD effects in Higgs boson production at hadron colliders, PoS(RADCOR2009)047 [arXiv:1001.3766] [SPIRES].
  115. [115]
    M. Buza, Y. Matiounine, J. Smith and W.L. van Neerven, Charm electroproduction viewed in the variable-flavour number scheme versus fixed-order perturbation theory, Eur. Phys. J. C 1 (1998) 301 [hep-ph/9612398] [SPIRES].ADSGoogle Scholar
  116. [116]
    S. Alekhin, Parton distributions from deep-inelastic scattering data, Phys. Rev. D 68 (2003) 014002 [hep-ph/0211096] [SPIRES].ADSGoogle Scholar
  117. [117]
    CDF collaboration, T. Aaltonen et al., Inclusive search for standard model Higgs boson production in the WW decay channel using the CDF II detector, Phys. Rev. Lett. 104 (2010) 061803 [arXiv:1001.4468] [SPIRES].ADSCrossRefGoogle Scholar
  118. [118]
    D0 collaboration, V.M. Abazov et al., Search for Higgs boson production in dilepton and missing energy final states with 5.4 fb −1 of \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 104 (2010) 061804 [arXiv:1001.4481] [SPIRES].ADSCrossRefGoogle Scholar
  119. [119]
    G. Bernardi et al., Combined CDF and D0 upper limits on standard model Higgs boson production at high mass (155200 GeV/c 2 ) with 3 fb −1 of data, arXiv:0808.0534 [SPIRES].
  120. [120]
    M. Dittmar, F. Pauss and D. Zurcher, Towards a precise parton luminosity determination at the CERN LHC, Phys. Rev. D 56 (1997) 7284 [hep-ex/9705004] [SPIRES].ADSGoogle Scholar
  121. [121]
    D. Zeppenfeld, R. Kinnunen, A. Nikitenko and E. Richter-Was, Measuring Higgs boson couplings at the LHC, Phys. Rev. D 62 (2000) 013009 [hep-ph/0002036] [SPIRES].ADSGoogle Scholar
  122. [122]
    M. Dührssen et al., Extracting Higgs boson couplings from LHC data, Phys. Rev. D 70 (2004) 113009 [hep-ph/0406323] [SPIRES].ADSGoogle Scholar
  123. [123]
    C. Anastasiou, K. Melnikov and F. Petriello, The gluon-fusion uncertainty in Higgs coupling extractions, Phys. Rev. D 72 (2005) 097302 [hep-ph/0509014] [SPIRES].ADSGoogle Scholar
  124. [124]
    J. Baglio et al., in preparation.Google Scholar
  125. [125]
    Tevatron new phenomena & Higgs working group: responses to concerns about the theoretical modeling of the gg → H signal, http://tevnphwg.fnal.gov/results/SMHPubWinter2010/gghtheoryreplies_may2010.html.
  126. [126]
    CDF and D0 collaboration, Combined CDF and D0 upper limits on standard model Higgs-boson production with up to 6.7 fb −1 of data, arXiv:1007.4587 [SPIRES].
  127. [127]
    CDF and D0 collaboration, B. Kiminster, Higgs boson searches at the Tevatron, talk given at ICHEP 2010, July 26 2010.Google Scholar
  128. [128]
    C. Anastasiou, Higgs production via gluon fusion, talk given at Higgs Hunting workshop, held in Orsay France July 29–31 2010, http://indico.lal.in2p3.fr/conferenceDisplay.py?confid=1109.
  129. [129]
    R. Thorne, PDFs, constraints and searches at LHC, talk given at Higgs Hunting workshop, held in Orsay France July 29–31 2010, http://indico.lal.in2p3.fr/conferenceDisplay.py?confid=1109.
  130. [130]
    The NNLO PDF sets can be found at Official page of the H1 and ZEUS public combined results, http://www.desy.de/h1zeus/combined_results.

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Laboratoire de Physique ThéoriqueUniversité Paris-Sud XI et CNRSOrsay CedexFrance
  2. 2.Theory UnitCERNGenève 23Switzerland
  3. 3.Laboratoire de Physique ThéoriqueUnité mixte CNRS et Université Paris-Sud XIOrsay CedexFrance

Personalised recommendations