Broken R-parity in the sky and at the LHC


Supersymmetric extensions of the Standard Model with small R-parity and lepton number violating couplings are naturally consistent with primordial nucleosynthesis, thermal leptogenesis and gravitino dark matter. We consider supergravity models with universal boundary conditions at the grand unification scale, and scalar τ-lepton or binolike neutralino as next-to-lightest superparticle (NLSP). Recent Fermi-LAT data on the isotropic diffuse gamma-ray flux yield a lower bound on the gravitino lifetime. Comparing two-body gravitino and neutralino decays we find a lower bound on a neutralino NLSP decay length, \( c{\tau_{\chi_1^0}}\mathop { > }\limits_\sim 30\,{\text{cm}} \). Together with gravitino and neutralino masses one obtains a microscopic determination of the Planck mass. For a τ-NLSP there exists no model-independent lower bound on the decay length. Here the strongest bound comes from the requirement that the cosmological baryon asymmetry is not washed out, which yields \( c{\tau_{\tilde{\tau }1}}\mathop { > }\limits_\sim 4\,{\text{mm}} \). However, without fine-tuning of parameters, one finds much larger decay lengths. For typical masses, m 3/2~100 GeV and m NLSP~150GeV, the discovery of a photon line with an intensity close to the Fermi-LAT limit would imply a decay length cτNLSP of several hundred meters, which can be measured at the LHC.


  1. [1]

    D.Z. Freedman, P. van Nieuwenhuizen and S. Ferrara, Progress Toward a Theory of Supergravity, Phys. Rev. D 13 (1976) 3214 [SPIRES].

    ADS  Google Scholar 

  2. [2]

    S. Deser and B. Zumino, Consistent Supergravity, Phys. Lett. B 62 (1976) 335 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. [3]

    H. Pagels and J.R. Primack, Supersymmetry, Cosmology and New TeV Physics, Phys. Rev. Lett. 48 (1982) 223 [SPIRES].

    Article  ADS  Google Scholar 

  4. [4]

    S. Weinberg, Cosmological Constraints on the Scale of Supersymmetry Breaking, Phys. Rev. Lett. 48 (1982) 1303 [SPIRES].

    Article  ADS  Google Scholar 

  5. [5]

    J.R. Ellis, D.V. Nanopoulos and S. Sarkar, The Cosmology of Decaying Gravitinos, Nucl. Phys. B 259 (1985) 175 [SPIRES].

    Article  ADS  Google Scholar 

  6. [6]

    M. Kawasaki, K. Kohri and T. Moroi, Hadronic decay of late-decaying particles and big-bang nucleosynthesis, Phys. Lett. B 625 (2005) 7 [astro-ph/0402490] [SPIRES].

    ADS  Google Scholar 

  7. [7]

    M. Kawasaki, K. Kohri and T. Moroi, Big-bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [SPIRES].

    ADS  Google Scholar 

  8. [8]

    K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [SPIRES].

    ADS  Google Scholar 

  9. [9]

    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [SPIRES].

    ADS  Google Scholar 

  10. [10]

    M. Bolz, W. Buchmüller and M. Plümacher, Baryon asymmetry and dark matter, Phys. Lett. B 443 (1998) 209 [hep-ph/9809381] [SPIRES].

    ADS  Google Scholar 

  11. [11]

    J .L. Feng, Supersymmetry and cosmology, Annals Phys. 315 (2005) 2 [SPIRES].

    MATH  Article  ADS  Google Scholar 

  12. [12]

    W. Buchmüller, L. Covi, K. Hamaguchi, A. Ibarra and T. Yanagida, Gravitino dark matter in R -parity breaking vacua, JHEP 03 (2007) 037 [hep-ph/0702184] [SPIRES].

    Article  ADS  Google Scholar 

  13. [13]

    F. Takayama and M. Yamaguchi, Gravitino dark matter without R -parity, Phys. Lett. B 485 (2000) 388 [hep-ph/0005214] [SPIRES].

    ADS  Google Scholar 

  14. [14]

    S. Lola, P. Osland and A.R. Raklev, Radiative gravitino decays from R -parity violation, Phys. Lett. B 656 (2007) 83 [arXiv:0707.2510] [SPIRES].

    ADS  Google Scholar 

  15. [15]

    G. Bertone, W. Buchmüller, L. Covi and A. Ibarra, Gamma-Rays from Decaying Dark Matter, JCAP 11 (2007) 003 [arXiv:0709.2299] [SPIRES].

    ADS  Google Scholar 

  16. [16]

    A. Ibarra and D. Tran, Gamma Ray Spectrum from Gravitino Dark Matter Decay, Phys. Rev. Lett. 100 (2008) 061301 [arXiv:0709.4593] [SPIRES].

    Article  ADS  Google Scholar 

  17. [17]

    K. Ishiwata, S. Matsumoto and T. Moroi, High Energy Cosmic Rays from the Decay of Gravitino Dark Matter, Phys. Rev. D 78 (2008) 063505 [arXiv:0805.1133] [SPIRES].

    ADS  Google Scholar 

  18. [18]

    W. Buchmüller, A. Ibarra, T. Shindou, F. Takayama and D. Tran, Probing Gravitino Dark Matter, JCAP 09 (2009) 021 [arXiv:0906.1187] [SPIRES].

    ADS  Google Scholar 

  19. [19]

    N.E. Bomark, S. Lola, P. Osland and A.R. Raklev, Photon, Neutrino and Charged Particle Spectra from R -violating Gravitino Decays, Phys. Lett. B 686 (2010) 152 [arXiv:0911.3376] [SPIRES].

    ADS  Google Scholar 

  20. [20]

    K.-Y. Choi, D. Restrepo, C.E. Yaguna and O. Zapata, Indirect detection of gravitino dark matter including its three-body decays, arXiv:1007.1728 [SPIRES].

  21. [21]

    A.A. Abdo et al., Fermi LAT Search for Photon Lines from 30 to 200 GeV and Dark Matter Implications, Phys. Rev. Lett. 104 (2010) 091302 [arXiv:1001.4836] [SPIRES].

    Article  ADS  Google Scholar 

  22. [22]

    The Fermi-LAT collaboration, A.A. Abdo et al., The Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived From First-Year Fermi Large Area Telescope Data, Phys. Rev. Lett. 104 (2010) 101101 [arXiv:1002.3603] [SPIRES].

    Article  ADS  Google Scholar 

  23. [23]

    W. Buchmüller, M. Endo and T. Shindou, Superparticle Mass Window from Leptogenesis and Decaying Gravitino Dark Matter, JHEP 11 (2008) 079 [arXiv:0809.4667] [SPIRES].

    Article  ADS  Google Scholar 

  24. [24]

    L.J. Hall and M. Suzuki, Explicit R -Parity Breaking in Supersymmetric Models, Nucl. Phys. B 231 (1984) 419 [SPIRES].

    Article  ADS  Google Scholar 

  25. [25]

    B.C. Allanach, A. Dedes and H.K. Dreiner, The R parity violating minimal supergravity model, Phys. Rev. D 69 (2004) 115002 [Erratum ibid. D 72 (2005) 079902] [hep-ph/0309196] [SPIRES].

    ADS  Google Scholar 

  26. [26]

    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [SPIRES].

    Article  ADS  Google Scholar 

  27. [27]

    F. de Campos et al., Probing bilinear R -parity violating supergravity at the LHC, JHEP 05 (2008) 048 [arXiv:0712.2156] [SPIRES].

    Article  Google Scholar 

  28. [28]

    B.C. Allanach and M.A. Bernhardt, Including R -parity violation in the numerical computation of the spectrum of the minimal supersymmetric standard model: SOFTSUSY3.0, Comput. Phys. Commun. 181 (2010) 232 [arXiv:0903.1805] [SPIRES].

    Article  ADS  Google Scholar 

  29. [29]

    B.A. Campbell, S. Davidson, J.R. Ellis and K.A. Olive, Cosmological baryon asymmetry constraints on extensions of the standard model, Phys. Lett. B 256 (1991) 484 [SPIRES].

    ADS  Google Scholar 

  30. [30]

    W. Fischler, G.F. Giudice, R.G. Leigh and S. Paban, Constraints on the baryogenesis scale from neutrino masses, Phys. Lett. B 258 (1991) 45 [SPIRES].

    ADS  Google Scholar 

  31. [31]

    H.K. Dreiner and G.G. Ross, Sphaleron erasure of primordial baryogenesis, Nucl. Phys. B 410 (1993) 188 [hep-ph/9207221] [SPIRES].

    Article  ADS  Google Scholar 

  32. [32]

    M. Endo, K. Hamaguchi and S. Iwamoto, Lepton Flavor Violation and Cosmological Constraints on R -parity Violation, JCA P 02 (2010) 032 [arXiv:0912.0585] [SPIRES].

    ADS  Google Scholar 

  33. [33]

    G.F. Giudice and A. Masiero, A Natural Solution to the mu Problem in Supergravity Theories, Phys. Lett. B 206 (1988) 480 [SPIRES].

    ADS  Google Scholar 

  34. [34]

    W. Buchmüller and T. Yanagida, Quark lepton mass hierarchies and the baryon asymmetry, Phys. Lett. B 445 (1999) 399 [hep-ph/9810308] [SPIRES].

    ADS  Google Scholar 

  35. [35]

    W. Buchmüller, D. Delepine and L.T. Handoko, Neutrino mixing and flavor changing processes, Nucl. Phys. B 576 (2000) 445 [hep-ph/9912317] [SPIRES].

    Article  ADS  Google Scholar 

  36. [36]

    M. Grefe, Neutrino signals from gravitino dark matter with broken R -parity, DESY-THESIS-2008-043 [SPIRES].

  37. [37]

    B. Mukhopadhyaya, S. Roy and F. Vissani, Correlation between neutrino oscillations and collider signals of supersymmetry in an R -parity violating model, Phys. Lett. B 443 (1998) 191 [hep-ph/9808265] [SPIRES].

    ADS  Google Scholar 

  38. [38]

    E.J. Chun and J.S. Lee, Implication of Super-Kamiokande data on R -parity violation, Phys. Rev. D 60 (1999) 075006 [hep-ph/9811201] [SPIRES].

    ADS  Google Scholar 

  39. [39]

    K. Ishiwata, T. Ito and T. Moroi, Long-Lived Unstable Superparticles at the LHC, Phys. Lett. B 669 (2008) 28 [arXiv:0807.0975] [SPIRES].

    ADS  Google Scholar 

  40. [40]

    S. Asai, K. Hamaguchi and S. Shirai, Stop and Decay of Long-lived Charged Massive Particles at the LHC detectors, Phys. Rev. Lett. 103 (2009) 141803 [arXiv:0902.3754] [SPIRES].

    Article  ADS  Google Scholar 

  41. [41]

    W. Buchmüller, K. Hamaguchi, M. Ratz and T. Yanagida, Supergravity at colliders, Phys. Lett. B 588 (2004) 90 [hep-ph/0402179] [SPIRES].

    ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to J. Schmidt.

Additional information

ArXiv ePrint: 1007.5007

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Bobrovskyi, S., Buchmüller, W., Hajer, J. et al. Broken R-parity in the sky and at the LHC. J. High Energ. Phys. 2010, 61 (2010).

Download citation


  • Supersymmetry Phenomenology