Broken R-parity in the sky and at the LHC

  • S. Bobrovskyi
  • W. Buchmüller
  • J. Hajer
  • J. SchmidtEmail author
Open Access


Supersymmetric extensions of the Standard Model with small R-parity and lepton number violating couplings are naturally consistent with primordial nucleosynthesis, thermal leptogenesis and gravitino dark matter. We consider supergravity models with universal boundary conditions at the grand unification scale, and scalar τ-lepton or binolike neutralino as next-to-lightest superparticle (NLSP). Recent Fermi-LAT data on the isotropic diffuse gamma-ray flux yield a lower bound on the gravitino lifetime. Comparing two-body gravitino and neutralino decays we find a lower bound on a neutralino NLSP decay length, \( c{\tau_{\chi_1^0}}\mathop { > }\limits_\sim 30\,{\text{cm}} \). Together with gravitino and neutralino masses one obtains a microscopic determination of the Planck mass. For a τ-NLSP there exists no model-independent lower bound on the decay length. Here the strongest bound comes from the requirement that the cosmological baryon asymmetry is not washed out, which yields \( c{\tau_{\tilde{\tau }1}}\mathop { > }\limits_\sim 4\,{\text{mm}} \). However, without fine-tuning of parameters, one finds much larger decay lengths. For typical masses, m 3/2~100 GeV and m NLSP~150GeV, the discovery of a photon line with an intensity close to the Fermi-LAT limit would imply a decay length cτNLSP of several hundred meters, which can be measured at the LHC.


Supersymmetry Phenomenology 


  1. [1]
    D.Z. Freedman, P. van Nieuwenhuizen and S. Ferrara, Progress Toward a Theory of Supergravity, Phys. Rev. D 13 (1976) 3214 [SPIRES].ADSGoogle Scholar
  2. [2]
    S. Deser and B. Zumino, Consistent Supergravity, Phys. Lett. B 62 (1976) 335 [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    H. Pagels and J.R. Primack, Supersymmetry, Cosmology and New TeV Physics, Phys. Rev. Lett. 48 (1982) 223 [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    S. Weinberg, Cosmological Constraints on the Scale of Supersymmetry Breaking, Phys. Rev. Lett. 48 (1982) 1303 [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    J.R. Ellis, D.V. Nanopoulos and S. Sarkar, The Cosmology of Decaying Gravitinos, Nucl. Phys. B 259 (1985) 175 [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    M. Kawasaki, K. Kohri and T. Moroi, Hadronic decay of late-decaying particles and big-bang nucleosynthesis, Phys. Lett. B 625 (2005) 7 [astro-ph/0402490] [SPIRES].ADSGoogle Scholar
  7. [7]
    M. Kawasaki, K. Kohri and T. Moroi, Big-bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [SPIRES].ADSGoogle Scholar
  8. [8]
    K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [SPIRES].ADSGoogle Scholar
  9. [9]
    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [SPIRES].ADSGoogle Scholar
  10. [10]
    M. Bolz, W. Buchmüller and M. Plümacher, Baryon asymmetry and dark matter, Phys. Lett. B 443 (1998) 209 [hep-ph/9809381] [SPIRES].ADSGoogle Scholar
  11. [11]
    J .L. Feng, Supersymmetry and cosmology, Annals Phys. 315 (2005) 2 [SPIRES].zbMATHCrossRefADSGoogle Scholar
  12. [12]
    W. Buchmüller, L. Covi, K. Hamaguchi, A. Ibarra and T. Yanagida, Gravitino dark matter in R -parity breaking vacua, JHEP 03 (2007) 037 [hep-ph/0702184] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    F. Takayama and M. Yamaguchi, Gravitino dark matter without R -parity, Phys. Lett. B 485 (2000) 388 [hep-ph/0005214] [SPIRES].ADSGoogle Scholar
  14. [14]
    S. Lola, P. Osland and A.R. Raklev, Radiative gravitino decays from R -parity violation, Phys. Lett. B 656 (2007) 83 [arXiv:0707.2510] [SPIRES].ADSGoogle Scholar
  15. [15]
    G. Bertone, W. Buchmüller, L. Covi and A. Ibarra, Gamma-Rays from Decaying Dark Matter, JCAP 11 (2007) 003 [arXiv:0709.2299] [SPIRES].ADSGoogle Scholar
  16. [16]
    A. Ibarra and D. Tran, Gamma Ray Spectrum from Gravitino Dark Matter Decay, Phys. Rev. Lett. 100 (2008) 061301 [arXiv:0709.4593] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    K. Ishiwata, S. Matsumoto and T. Moroi, High Energy Cosmic Rays from the Decay of Gravitino Dark Matter, Phys. Rev. D 78 (2008) 063505 [arXiv:0805.1133] [SPIRES].ADSGoogle Scholar
  18. [18]
    W. Buchmüller, A. Ibarra, T. Shindou, F. Takayama and D. Tran, Probing Gravitino Dark Matter, JCAP 09 (2009) 021 [arXiv:0906.1187] [SPIRES].ADSGoogle Scholar
  19. [19]
    N.E. Bomark, S. Lola, P. Osland and A.R. Raklev, Photon, Neutrino and Charged Particle Spectra from R -violating Gravitino Decays, Phys. Lett. B 686 (2010) 152 [arXiv:0911.3376] [SPIRES]. ADSGoogle Scholar
  20. [20]
    K.-Y. Choi, D. Restrepo, C.E. Yaguna and O. Zapata, Indirect detection of gravitino dark matter including its three-body decays, arXiv:1007.1728 [SPIRES].
  21. [21]
    A.A. Abdo et al., Fermi LAT Search for Photon Lines from 30 to 200 GeV and Dark Matter Implications, Phys. Rev. Lett. 104 (2010) 091302 [arXiv:1001.4836] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    The Fermi-LAT collaboration, A.A. Abdo et al., The Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived From First-Year Fermi Large Area Telescope Data, Phys. Rev. Lett. 104 (2010) 101101 [arXiv:1002.3603] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    W. Buchmüller, M. Endo and T. Shindou, Superparticle Mass Window from Leptogenesis and Decaying Gravitino Dark Matter, JHEP 11 (2008) 079 [arXiv:0809.4667] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    L.J. Hall and M. Suzuki, Explicit R -Parity Breaking in Supersymmetric Models, Nucl. Phys. B 231 (1984) 419 [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    B.C. Allanach, A. Dedes and H.K. Dreiner, The R parity violating minimal supergravity model, Phys. Rev. D 69 (2004) 115002 [Erratum ibid. D 72 (2005) 079902] [hep-ph/0309196] [SPIRES].ADSGoogle Scholar
  26. [26]
    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    F. de Campos et al., Probing bilinear R -parity violating supergravity at the LHC, JHEP 05 (2008) 048 [arXiv:0712.2156] [SPIRES].CrossRefGoogle Scholar
  28. [28]
    B.C. Allanach and M.A. Bernhardt, Including R -parity violation in the numerical computation of the spectrum of the minimal supersymmetric standard model: SOFTSUSY3.0, Comput. Phys. Commun. 181 (2010) 232 [arXiv:0903.1805] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    B.A. Campbell, S. Davidson, J.R. Ellis and K.A. Olive, Cosmological baryon asymmetry constraints on extensions of the standard model, Phys. Lett. B 256 (1991) 484 [SPIRES].ADSGoogle Scholar
  30. [30]
    W. Fischler, G.F. Giudice, R.G. Leigh and S. Paban, Constraints on the baryogenesis scale from neutrino masses, Phys. Lett. B 258 (1991) 45 [SPIRES].ADSGoogle Scholar
  31. [31]
    H.K. Dreiner and G.G. Ross, Sphaleron erasure of primordial baryogenesis, Nucl. Phys. B 410 (1993) 188 [hep-ph/9207221] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    M. Endo, K. Hamaguchi and S. Iwamoto, Lepton Flavor Violation and Cosmological Constraints on R -parity Violation, JCA P 02 (2010) 032 [arXiv:0912.0585] [SPIRES].ADSGoogle Scholar
  33. [33]
    G.F. Giudice and A. Masiero, A Natural Solution to the mu Problem in Supergravity Theories, Phys. Lett. B 206 (1988) 480 [SPIRES].ADSGoogle Scholar
  34. [34]
    W. Buchmüller and T. Yanagida, Quark lepton mass hierarchies and the baryon asymmetry, Phys. Lett. B 445 (1999) 399 [hep-ph/9810308] [SPIRES].ADSGoogle Scholar
  35. [35]
    W. Buchmüller, D. Delepine and L.T. Handoko, Neutrino mixing and flavor changing processes, Nucl. Phys. B 576 (2000) 445 [hep-ph/9912317] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    M. Grefe, Neutrino signals from gravitino dark matter with broken R -parity, DESY-THESIS-2008-043 [SPIRES].Google Scholar
  37. [37]
    B. Mukhopadhyaya, S. Roy and F. Vissani, Correlation between neutrino oscillations and collider signals of supersymmetry in an R -parity violating model, Phys. Lett. B 443 (1998) 191 [hep-ph/9808265] [SPIRES].ADSGoogle Scholar
  38. [38]
    E.J. Chun and J.S. Lee, Implication of Super-Kamiokande data on R -parity violation, Phys. Rev. D 60 (1999) 075006 [hep-ph/9811201] [SPIRES].ADSGoogle Scholar
  39. [39]
    K. Ishiwata, T. Ito and T. Moroi, Long-Lived Unstable Superparticles at the LHC, Phys. Lett. B 669 (2008) 28 [arXiv:0807.0975] [SPIRES].ADSGoogle Scholar
  40. [40]
    S. Asai, K. Hamaguchi and S. Shirai, Stop and Decay of Long-lived Charged Massive Particles at the LHC detectors, Phys. Rev. Lett. 103 (2009) 141803 [arXiv:0902.3754] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    W. Buchmüller, K. Hamaguchi, M. Ratz and T. Yanagida, Supergravity at colliders, Phys. Lett. B 588 (2004) 90 [hep-ph/0402179] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • S. Bobrovskyi
    • 1
  • W. Buchmüller
    • 1
  • J. Hajer
    • 1
  • J. Schmidt
    • 1
    Email author
  1. 1.Deutsches Elektronen-Synchrotron DESYHamburgGermany

Personalised recommendations