Holography and the sound of criticality

  • Mohammad Edalati
  • Juan I. Jottar
  • Robert G. Leigh


Using gauge/gravity duality techniques, we discuss the sound-channel retarded correlators of vector and tensor conserved currents in a class of (2+1)-dimensional strongly-coupled field theories at zero temperature and finite charge density, assumed to be holographically dual to the extremal Reissner-Nordström AdS4 black hole. Using a combination of analytical and numerical methods, we determine the quasinormal mode spectrum at finite momentum for the coupled gravitational and electromagnetic perturbations, and discuss the appropriate choice of gauge-invariant variables (master fields) in order for the black hole quasinormal frequencies to reproduce the field theory spectrum. We discuss the role of the near horizon AdS2 geometry in determining the low-frequency behavior of retarded correlators in the boundary theory, and comment on the emergence of criticality in the IR. In addition, we establish the existence of a sound mode at zero temperature and compute the speed of sound and sound attenuation constant numerically, obtaining a result consistent with the expectations from the zero temperature limit of hydrodynamics. The dispersion relation of higher resonances is also investigated.


Gauge-gravity correspondence AdS-CFT Correspondence 


  1. [1]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].Google Scholar
  3. [3]
    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [SPIRES].Google Scholar
  4. [4]
    G.T. Horowitz, Introduction to Holographic Superconductors, arXiv:1002.1722 [SPIRES].
  5. [5]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS2, arXiv:0907.2694 [SPIRES].
  6. [6]
    M. Edalati, J.I. Jottar and R.G. Leigh, Transport Coefficients at Zero Temperature from Extremal Black Holes, JHEP 01 (2010) 018 [arXiv:0910.0645] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    M. Edalati, J.I. Jottar and R.G. Leigh, Shear Modes, Criticality and Extremal Black Holes, JHEP 04 (2010) 075 [arXiv:1001.0779] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    D.T. Son and A.O. Starinets, Viscosity, Black Holes and Quantum Field Theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    I. Amado, C. Hoyos-Badajoz, K. Landsteiner and S. Montero, Hydrodynamics and beyond in the strongly coupled N =4 plasma, JHEP 07 (2008) 133 [arXiv:0805.2570] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    H. Kodama and A. Ishibashi, Master equations for perturbations of generalized static black holes with charge in higher dimensions, Prog. Theor. Phys. 111 (2004) 29 [hep-th/0308128] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  12. [12]
    P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [SPIRES].ADSGoogle Scholar
  13. [13]
    G. Michalogiorgakis and S.S. Pufu, Low-lying gravitational modes in the scalar sector of the global AdS 4 black hole, JHEP 02 (2007) 023 [hep-th/0612065] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    P. Kraus, F. Larsen and R. Siebelink, The gravitational action in asymptotically AdS and flat spacetimes, Nucl. Phys. B 563 (1999) 259 [hep-th/9906127] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    D.T. Son and A.O. Starinets, Hydrodynamics of R -charged black holes, JHEP 03 (2006) 052 [hep-th/0601157] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    A.S. Miranda, J. Morgan and V.T. Zanchin, Quasinormal modes of plane-symmetric black holes according to the AdS/CFT correspondence, JHEP 11 (2008) 030 [arXiv:0809.0297] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D 62 (2000) 024027 [hep-th/9909056] [SPIRES].MathSciNetADSGoogle Scholar
  19. [19]
    D. Birmingham, I. Sachs and S.N. Solodukhin, Conformal field theory interpretation of black hole quasi-normal modes, Phys. Rev. Lett. 88 (2002) 151301 [hep-th/0112055] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    E. Berti and K.D. Kokkotas, Quasinormal modes of Reissner-Nordström-anti-de Sitter black holes: Scalar, electromagnetic and gravitational perturbations, Phys. Rev. D 67 (2003) 064020 [gr-qc/0301052] [SPIRES].MathSciNetADSGoogle Scholar
  21. [21]
    E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    F. Denef, S.A. Hartnoll and S. Sachdev, Quantum oscillations and black hole ringing, Phys. Rev. D 80 (2009) 126016 [arXiv:0908.1788] [SPIRES].ADSGoogle Scholar
  23. [23]
    E.W. Leaver, Quasinormal modes of Reissner-Nordstrom black holes, Phys. Rev. D 41 (1990) 2986 [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    E.S.C. Ching, P.T. Leung, W.M. Suen and K. Young, Wave propagation in gravitational systems: Late time behavior, Phys. Rev. D 52 (1995) 2118 [gr-qc/9507035] [SPIRES].ADSGoogle Scholar
  25. [25]
    J.J. Friess, S.S. Gubser, G. Michalogiorgakis and S.S. Pufu, Expanding plasmas and quasinormal modes of anti-de Sitter black holes, JHEP 04 (2007) 080 [hep-th/0611005] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    I. Amado, C. Hoyos-Badajoz, K. Landsteiner and S. Montero, Residues of Correlators in the Strongly Coupled N =4 Plasma, Phys. Rev. D 77 (2008) 065004 [arXiv:0710.4458] [SPIRES]. ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Mohammad Edalati
    • 1
  • Juan I. Jottar
    • 1
  • Robert G. Leigh
    • 1
  1. 1.Department of PhysicsUniversity of IllinoisUrbanaU.S.A.

Personalised recommendations