Journal of High Energy Physics

, 2010:47

Invariances and equations of motion in double field theory



We investigate the full set of equations of motion in double field theory and discuss their O(D,D) symmetry and gauge transformation properties. We obtain a Ricci-like tensor, its associated Bianchi identities, and relate our results to those with a generalized metric formulation.


Gauge Symmetry Space-Time Symmetries Global Symmetries String Duality 


  1. [1]
    A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rept. 244 (1994) 77 [hep-th/9401139] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    T. Kugo and B. Zwiebach, Target space duality as a symmetry of string field theory, Prog. Theor. Phys. 87 (1992) 801 [hep-th/9201040] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    B. Zwiebach, Closed string field theory: Quantum action and the B-V master equation, Nucl. Phys. B 390 (1993) 33 [hep-th/9206084] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics, Phys. Lett. B 242 (1990) 163 [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [SPIRES].ADSGoogle Scholar
  11. [11]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [SPIRES].ADSGoogle Scholar
  12. [12]
    M. Gualtieri, Generalized complex geometry, Ph.D. Thesis, Oxford University (2004) [math.DG/0401221].

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations