Implications of flavor dynamics for fermion triplet leptogenesis

  • Diego Aristizabal Sierra
  • Jernej F. KamenikEmail author
  • Miha Nemevšek


We analyze the importance of flavor effects in models in which leptogenesis proceeds via the decay of Majorana electroweak triplets. We find that depending on the relative strengths of gauge and Yukawa reactions the BL asymmetry can be sizably enhanced, exceeding in some cases an order of magnitude level. We also discuss the impact that such effects can have for TeV-scale triplets showing that as long as the BL asymmetry is produced by the dynamics of the lightest such triplet they are negligible, but open the possibility for scenarios in which the asymmetry is generated above the TeV scale by heavier states, possibly surviving the TeV triplet related washouts. We investigate these cases and discuss how they can be disentangled by using Majorana triplet collider observables and, in the case of minimal type III see-saw models even through lepton flavor violation observables.


Beyond Standard Model Cosmology of Theories beyond the SM Neutrino Physics 


  1. [1]
    WMAP collaboration, G. Hinshaw et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations:Data Processing, Sky Maps, & Basic Results, Astrophys. J. Suppl. 180 (2009) 225 [arXiv:0803.0732] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    A.D. Sakharov, Violation of CP Invariance, c Asymmetry and Baryon Asymmetry of the Universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [JETP Lett. 5 (1967 SOPUA,34,392-393.1991 UFNAA,161,61-64.1991) 24]. [SPIRES].Google Scholar
  3. [3]
    A.D. Dolgov, NonGUT baryogenesis, Phys. Rept. 222 (1992) 309 [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36 [SPIRES].ADSGoogle Scholar
  5. [5]
    P. Minkowski, μ → eγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].ADSGoogle Scholar
  6. [6]
    T. Yanagida, Horizontal Symmetry And Masses Of Neutrinos, in proceedings of Workshop on Unified Theory and Baryon number in the Universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba, (1979) p.95.Google Scholar
  7. [7]
    M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity, P. van Niewenhuizen and D.Z. Freedman eds., North Holland, Amsterdam (1980) p.315.Google Scholar
  8. [8]
    P. Ramond, The Family Group in Grand Unified Theories, hep-ph/9809459 [SPIRES].
  9. [9]
    S. L. Glashow, Particle Physics Far From The High-Energy Frontier in Quarks and Leptons, Cargèse lectures, M. Lévy ed., Plenum, New York (1980) p. 707.Google Scholar
  10. [10]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [SPIRES].ADSGoogle Scholar
  12. [12]
    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    R. Barbieri, P. Creminelli, A. Strumia and N. Tetradis, Baryogenesis through leptogenesis, Nucl. Phys. B 575 (2000) 61 [hep-ph/9911315] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    A. Abada et al., Flavour matters in leptogenesis, JHEP 09 (2006) 010 [hep-ph/0605281] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    E. Nardi, Y. Nir, E. Roulet and J. Racker, The importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    A. Abada, S. Davidson, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavour Issues in Leptogenesis, JCAP 04 (2006) 004 [hep-ph/0601083] [SPIRES].ADSGoogle Scholar
  18. [18]
    E. Nardi, Y. Nir, J. Racker and E. Roulet, On Higgs and sphaleron effects during the leptogenesis era, JHEP 01 (2006) 068 [hep-ph/0512052] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    P. Di Bari, Seesaw geometry and leptogenesis, Nucl. Phys. B 727 (2005) 318 [hep-ph/0502082] [SPIRES].ADSGoogle Scholar
  20. [20]
    G. Engelhard, Y. Grossman, E. Nardi and Y. Nir, The importance of N2 leptogenesis, Phys. Rev. Lett. 99 (2007) 081802 [hep-ph/0612187] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    O. Vives, Flavor dependence of CP asymmetries and thermal leptogenesis with strong right-handed neutrino mass hierarchy, Phys. Rev. D 73 (2006) 073006 [hep-ph/0512160] [SPIRES].ADSGoogle Scholar
  22. [22]
    S. Antusch, P. Di Bari, D.A. Jones and S.F. King, A fuller flavour treatment of N 2 -dominated leptogenesis, arXiv:1003.5132 [SPIRES].
  23. [23]
    J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [SPIRES].ADSGoogle Scholar
  24. [24]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [SPIRES].ADSGoogle Scholar
  26. [26]
    C. Wetterich, Neutrino Masses and the Scale of B-L Violation, Nucl. Phys. B 187 (1981) 343 [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [SPIRES].Google Scholar
  28. [28]
    T. Hambye and G. Senjanović, Consequences of triplet seesaw for leptogenesis, Phys. Lett. B 582 (2004) 73 [hep-ph/0307237] [SPIRES].ADSGoogle Scholar
  29. [29]
    S. Antusch and S.F. King, Type II leptogenesis and the neutrino mass scale, Phys. Lett. B 597 (2004) 199 [hep-ph/0405093] [SPIRES].ADSGoogle Scholar
  30. [30]
    S. Antusch, Flavour-dependent type-II leptogenesis, Phys. Rev. D 76 (2007) 023512 [arXiv:0704.1591] [SPIRES].ADSGoogle Scholar
  31. [31]
    T. Hambye, Y. Lin, A. Notari, M. Papucci and A. Strumia, Constraints on neutrino masses from leptogenesis models, Nucl. Phys. B 695 (2004) 169 [hep-ph/0312203] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    W. Fischler and R. Flauger, Neutrino Masses, Leptogenesis and Unification in the Absence of Low Energy Supersymmetry, JHEP 09 (2008) 020 [arXiv:0805.3000] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    A. Strumia, Sommerfeld corrections to type-II and III leptogenesis, Nucl. Phys. B 809 (2009) 308 [arXiv:0806.1630] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    A. Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    A. Pilaftsis and T.E.J. Underwood, Electroweak-scale resonant leptogenesis, Phys. Rev. D 72 (2005) 113001 [hep-ph/0506107] [SPIRES].ADSGoogle Scholar
  36. [36]
    T. Schwetz, M.A. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    L. Covi, E. Roulet and F. Vissani, CP violating decays in leptogenesis scenarios, Phys. Lett. B 384 (1996) 169 [hep-ph/9605319] [SPIRES].ADSGoogle Scholar
  39. [39]
    E. Nardi, J. Racker and E. Roulet, CP violation in scatterings, three body processes and the Boltzmann equations for leptogenesis, JHEP 09 (2007) 090 [arXiv:0707.0378] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    J.A. Harvey and M.S. Turner, Cosmological baryon and lepton number in the presence of electroweak fermion number violation, Phys. Rev. D 42 (1990) 3344 [SPIRES].ADSGoogle Scholar
  41. [41]
    Y. Burnier, M. Laine and M. Shaposhnikov, Baryon and lepton number violation rates across the electroweak crossover, JCAP 02 (2006) 007 [hep-ph/0511246] [SPIRES].ADSGoogle Scholar
  42. [42]
    R. Franceschini, T. Hambye and A. Strumia, Type-III see-saw at LHC, Phys. Rev. D 78 (2008) 033002 [arXiv:0805.1613] [SPIRES].ADSGoogle Scholar
  43. [43]
    F. del Aguila and J.A. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [SPIRES].zbMATHCrossRefADSGoogle Scholar
  44. [44]
    A. Arhrib et al., Collider Signatures for Heavy Lepton Triplet in Type I+III Seesaw, Phys. Rev. D 82 (2010) 053004 [arXiv:0904.2390] [SPIRES].ADSGoogle Scholar
  45. [45]
    ILC collaboration, T. Behnke, (Ed. ) et al., ILC Reference Design Report Volume 4 - Detectors, arXiv:0712.2356 [SPIRES].
  46. [46]
    The ATLAS collaboration, G. Aad et al., Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics, arXiv:0901.0512 [SPIRES].
  47. [47]
    B. Bajc and G. Senjanović, Seesaw at LHC, JHEP 08 (2007) 014 [hep-ph/0612029] [SPIRES].CrossRefADSGoogle Scholar
  48. [48]
    B. Bajc, M. Nemevšek and G. Senjanović, Probing seesaw at LHC, Phys. Rev. D 76 (2007) 055011 [hep-ph/0703080] [SPIRES].ADSGoogle Scholar
  49. [49]
    S. Blanchet and P. Fileviez Perez, Baryogenesis via Leptogenesis in Adjoint SU(5), JCAP 08 (2008) 037 [arXiv:0807.3740] [SPIRES].ADSGoogle Scholar
  50. [50]
    A. Ibarra and G.G. Ross, Neutrino phenomenology: The case of two right handed neutrinos, Phys. Lett. B 591 (2004) 285 [hep-ph/0312138] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    J.F. Kamenik and M. Nemevšek, Lepton flavor violation in type-I + III seesaw, JHEP 11 (2009) 023 [arXiv:0908.3451] [SPIRES].CrossRefADSGoogle Scholar
  52. [52]
    C. Ankenbrandt et al., Using the Fermilab proton source for a muon to electron conversion experiment, physics/0611124.
  53. [53]
    PRISM/PRIME group, An Experimental Search for μ e Conversion at a Sensitivity of 10−16 with a Slow-Extracted Bunched Beam,
  54. [54]
    PRISM/PRIME group, An Experimental Search for A μ e Conversion at Sensitivity of the Order of 10 18 with a Highly Intense Muon Source: PRISM,
  55. [55]
    J.-M. Frere, T. Hambye and G. Vertongen, Is leptogenesis falsifiable at LHC?, JHEP 01 (2009) 051 [arXiv:0806.0841] [SPIRES].CrossRefADSGoogle Scholar
  56. [56]
    S. Blanchet, Z. Chacko and R.N. Mohapatra, Neutrino Mass Seesaw at the Weak Scale, the Baryon Asymmetry and the LHC, Phys. Rev. D 80 (2009) 085002 [arXiv:0812.3837] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Diego Aristizabal Sierra
    • 1
    • 2
  • Jernej F. Kamenik
    • 3
    Email author
  • Miha Nemevšek
    • 4
    • 3
  1. 1.Universite de Liege, Institut de physique Bat B5Liege 1Belgium
  2. 2.INFN, Laboratori Nazionali di FrascatiFrascatiItaly
  3. 3.J. Stefan InstituteLjubljanaSlovenia
  4. 4.II. Institut für Theoretische PhysikUniversität HamburgHamburgGermany

Personalised recommendations