Fluctuations, saturation, and diffractive excitation in high energy collisions

  • Christoffer Flensburg
  • Gösta Gustafson


Diffractive excitation is usually described by the Good-Walker formalism for low masses, and by the triple-Regge formalism for high masses. In the Good-Walker formalism the cross section is determined by the fluctuations in the interaction. In this paper we show that by taking the fluctuations in the BFKL ladder into account, it is possible to describe both low and high mass excitation by the Good-Walker mechanism. In high energy pp collisions the fluctuations are strongly suppressed by saturation, which implies that pomeron exchange does not factorise between DIS and pp collisions. The Dipole Cascade Model reproduces the expected triple-Regge form for the bare pomeron, and the triple-pomeron coupling is estimated.


QCD Phenomenology Phenomenological Models 


  1. [1]
    M.L. Good and W.D. Walker, Diffraction disssociation of beam particles, Phys. Rev. 120 (1960) 1857 [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    A.H. Mueller, O(2,1) Analysis Of Single Particle Spectra At High-Energy, Phys. Rev. D2 (1970) 2963 [SPIRES].ADSGoogle Scholar
  3. [3]
    C.E. DeTar et al., Helicity poles, triple-regge behavior and single-particle spectra in high-energy collisions, Phys. Rev. Lett. 26 (1971) 675 [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    M.G. Ryskin, A.D. Martin and V.A. Khoze, Soft processes at the LHC, I: Multi-component model, Eur. Phys. J. C 60 (2009) 249 [arXiv:0812.2407] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    A.B. Kaidalov and M.G. Poghosyan, Description of soft diffraction in the framework of reggeon calculus. Predictions for LHC, arXiv:0909.5156 [SPIRES].
  6. [6]
    A.H. Mueller and G.P. Salam, Large multiplicity fluctuations and saturation effects in onium collisions, Nucl. Phys. B 475 (1996) 293 [hep-ph/9605302] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    K.A. Goulianos, Renormalization of hadronic diffraction and the structure of the Pomeron, Phys. Lett. B 358 (1995) 379 [hep-ph/9502356] [SPIRES].ADSGoogle Scholar
  8. [8]
    N. Nikolaev and B.G. Zakharov, Pomeron structure function and diffraction dissociation of virtual photons in perturbative QCD, Z. Phys. C 53 (1992) 331 [SPIRES].ADSGoogle Scholar
  9. [9]
    J. Bartels and M. Wusthoff, A perturbative approach to diffractive deep inelastic scattering, J. Phys. G 22 (1996) 929 [SPIRES].ADSGoogle Scholar
  10. [10]
    J. Bartels, J.R. Ellis, H. Kowalski and M. Wusthoff, An analysis of diffraction in deep-inelastic scattering, Eur. Phys. J. C7 (1999) 443 [hep-ph/9803497] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    K.J. Golec-Biernat and M. Wusthoff, Diffractive parton distributions from the saturation model, Eur. Phys. J. C 20 (2001) 313 [hep-ph/0102093] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    H1 collaboration, F.-P. Schilling, NLO QCD fit to H1 diffractive DIS data, Acta Phys. Polon. B 33 (2002) 3419 [hep-ex/0209001] [SPIRES].ADSGoogle Scholar
  13. [13]
    K.A. Goulianos, Hadronic diffraction: Where do we stand?, hep-ph/0407035 [SPIRES].
  14. [14]
    H.I. Miettinen and J. Pumplin, Diffraction Scattering and the Parton Structure of Hadrons, Phys. Rev. D 18 (1978) 1696 [SPIRES].ADSGoogle Scholar
  15. [15]
    A.H. Mueller, Soft gluons in the infinite momentum wave function and the BFKL Pomeron, Nucl. Phys. B 415 (1994) 373 [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    A.H. Mueller and B. Patel, Single and double BFKL Pomeron exchange and a dipole picture of high-energy hard processes, Nucl. Phys. B 425 (1994) 471 [hep-ph/9403256] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    A.H. Mueller, Unitarity and the BFKL Pomeron, Nucl. Phys. B 437 (1995) 107 [hep-ph/9408245] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    E. Avsar, G. Gustafson and L. Lönnblad, Energy conservation and saturation in small-x evolution, JHEP 07 (2005) 062 [hep-ph/0503181] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    E. Avsar, G. Gustafson and L. Lönnblad, Small-x dipole evolution beyond the large-N c limit, JHEP 01 (2007) 012 [hep-ph/0610157] [SPIRES].ADSGoogle Scholar
  20. [20]
    E. Avsar, G. Gustafson and L. Lönnblad, Diffractive excitation in DIS and pp collisions, JHEP 12 (2007) 012 [arXiv:0709.1368] [SPIRES].ADSGoogle Scholar
  21. [21]
    C. Flensburg, G. Gustafson and L. Lönnblad, Elastic and quasi-elastic pp and γ∗p scattering in the Dipole Model, Eur. Phys. J. C 60 (2009) 233 [arXiv:0807.0325] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    M.G. Ryskin, A.D. Martin and V.A. Khoze, Soft processes at the LHC, II: Soft-hard factorization breaking and gap survival, Eur. Phys. J. C 60 (2009) 265 [arXiv:0812.2413] [SPIRES]. CrossRefADSGoogle Scholar
  23. [23]
    M. Boonekamp, R.B. Peschanski and C. Royon, Inclusive Higgs boson and dijet production via double Pomeron exchange, Phys. Rev. Lett. 87 (2001) 251806 [hep-ph/0107113] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    E. Gotsman, E. Levin, U. Maor and J.S. Miller, AQCD motivated model for soft interactions at high energies, Eur. Phys. J. C 57 (2008) 689 [arXiv:0805.2799] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    B. Cox, J.R. Forshaw and L. Lönnblad, Hard color singlet exchange at the Tevatron, JHEP 10 (1999) 023 [hep-ph/9908464] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    Y. Hatta, E. Iancu, C. Marquet, G. Soyez and D.N. Triantafyllopoulos, Diffusive scaling and the high-energy limit of deep in elastic scattering in QCD at large-N c , Nucl. Phys. A 773 (2006) 95 [hep-ph/0601150] [SPIRES].ADSGoogle Scholar
  27. [27]
    G.P. Salam, An introduction to leading and next-to-leading BFKL, Acta Phys. Polon. B 30 (1999) 3679 [hep-ph/9910492] [SPIRES].ADSGoogle Scholar
  28. [28]
    E. Avsar, On the High Energy Behaviour of The Total Cross section in the QCD Dipole Model, JHEP 04 (2008) 033 [arXiv:0803.0446] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    CDF collaboration, F. Abe et al., Measurement of \( \overline p p \) single diffraction dissociation at \( \sqrt {s} = 546\,GeV \) and 1800 GeV, Phys. Rev. D 50 (1994) 5535 [SPIRES].ADSGoogle Scholar
  30. [30]
    CDF collaboration, F. Abe et al., Measurement of the \( \overline p p \) total cross-section at \( \sqrt {s} = 546\,GeV \) and 1800 GeV, Phys. Rev. D 50 (1994) 5550 [SPIRES].ADSGoogle Scholar
  31. [31]
    S. Sapeta and K.J. Golec-Biernat, Total, elastic and diffractive cross sections at LHC in the Miettinen-Pumplin model, Phys. Lett. B 613 (2005) 154 [hep-ph/0502229] [SPIRES].ADSGoogle Scholar
  32. [32]
    P. Bruni and G. Ingelman, Diffractive W and Z production at \( p\overline p \) colliders and the Pomeron parton content, Phys. Lett. B 311 (1993) 317 [SPIRES].ADSGoogle Scholar
  33. [33]
    J. Bartels, M.G. Ryskin and G.P. Vacca, On the triple Pomeron vertex in perturbative QCD, Eur. Phys. J. C 27 (2003) 101 [hep-ph/0207173] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    L.N. Lipatov, The Bare Pomeron in Quantum Chromodynamics, Sov. Phys. JETP 63 (1986) 904 [SPIRES].Google Scholar
  35. [35]
    A.B. Kaidalov, V.A. Khoze, Y.F. Pirogov and N.L. Ter-Isaakyan, On determination of the triple Pomeron coupling from the ISR data, Phys. Lett. B 45 (1973) 493 [SPIRES].ADSGoogle Scholar
  36. [36]
    R.D. Field and G.C. Fox, Triple Regge and Finite Mass Sum Rule Analysis of the Inclusive Reaction p+ pp+ x, Nucl. Phys. B 80 (1974)367 [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    S. Ostapchenko, Total and diffractive cross sections in enhanced Pomeron scheme, Phys. Rev. D 81 (2010) 114028 [arXiv:1003.0196] [SPIRES].ADSGoogle Scholar
  38. [38]
    A.B. Kaidalov and M.G. Poghosyan, Predictions of quark-gluon String Model for pp at LHC, Eur. Phys. J. C 67 (2010) 397 [arXiv:0910.2050] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsLund UniversityLundSweden

Personalised recommendations