Journal of High Energy Physics

, 2015:199 | Cite as

Resurgence and dynamics of O(N) and Grassmannian sigma models

Open Access
Regular Article - Theoretical Physics

Abstract

We study the non-perturbative dynamics of the two dimensional O(N ) and Grassmannian sigma models by using compactification with twisted boundary conditions on \( \mathbb{R}\times {S}^1 \), semi-classical techniques and resurgence. While the O(N) model has no instantons for N > 3, it has (non-instanton) saddles on \( {\mathbb{R}}^2 \), which we call 2d-saddles. On \( \mathbb{R}\times {S}^1 \), the resurgent relation between perturbation theory and non-perturbative physics is encoded in new saddles, which are associated with the affine root system of the o(N ) algebra. These events may be viewed as fractionalizations of the 2d-saddles. The first beta function coefficient, given by the dual Coxeter number, can then be intepreted as the sum of the multiplicities (dual Kac labels) of these fractionalized objects. Surprisingly, the new saddles in O(N ) models in compactified space are in one-to-one correspondence with monopole-instanton saddles in SO(N ) gauge theory on \( {\mathbb{R}}^3\times {S}^1 \). The Grassmannian sigma models Gr(N, M ) have 2d instantons, which fractionalize into N kink-instantons. The small circle dynamics of both sigma models can be described as a dilute gas of the one-events and two-events, bions. One-events are the leading source of a variety of non-perturbative effects, and produce the strong scale of the 2d theory in the compactified theory. We show that in both types of sigma models the neutral bion emulates the role of IR-renormalons. We also study the topological theta angle dependence in both the O(3) model and Gr(N, M ), and describe the multi-branched structure of the observables in terms of the theta-angle dependence of the saddle amplitudes, providing a microscopic argument for Haldane’s conjecture.

Keywords

Nonperturbative Effects Field Theories in Lower Dimensions Sigma Models 

References

  1. [1]
    P.C. Argyres and M. Ünsal, A semiclassical realization of infrared renormalons, Phys. Rev. Lett. 109 (2012) 121601 [arXiv:1204.1661] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    P.C. Argyres and M. Ünsal, The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion and renormalon effects, JHEP 08 (2012) 063 [arXiv:1206.1890] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    G.V. Dunne and M. Ünsal, Resurgence and Trans-series in Quantum Field Theory: The \( \mathbb{C}{\mathrm{\mathbb{P}}}^{N-1} \) Model, JHEP 11 (2012) 170 [arXiv:1210.2423] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    G.V. Dunne and M. Ünsal, Continuity and Resurgence: towards a continuum definition of the \( \mathbb{C}{\mathrm{\mathbb{P}}}^{N-1} \) model, Phys. Rev. D 87 (2013) 025015 [arXiv:1210.3646] [INSPIRE].ADSGoogle Scholar
  5. [5]
    A. Cherman, D. Dorigoni, G.V. Dunne and M. Ünsal, Resurgence in Quantum Field Theory: Nonperturbative Effects in the Principal Chiral Model, Phys. Rev. Lett. 112 (2014) 021601 [arXiv:1308.0127] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Cherman, D. Dorigoni and M. Ünsal, Decoding perturbation theory using resurgence: Stokes phenomena, new saddle points and Lefschetz thimbles, arXiv:1403.1277 [INSPIRE].
  7. [7]
    T. Misumi, M. Nitta and N. Sakai, Neutral bions in the \( \mathbb{C}{\mathrm{\mathbb{P}}}^{N-1} \) model, JHEP 06 (2014) 164 [arXiv:1404.7225] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T. Misumi, M. Nitta and N. Sakai, Neutral bions in the \( \mathbb{C}{\mathrm{\mathbb{P}}}^{N-1} \) model for resurgence, J. Phys. Conf. Ser. 597 (2015) 012060 [arXiv:1412.0861] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    G.V. Dunne and M. Ünsal, Generating nonperturbative physics from perturbation theory, Phys. Rev. D 89 (2014) 041701 [arXiv:1306.4405] [INSPIRE].ADSGoogle Scholar
  10. [10]
    G.V. Dunne and M. Ünsal, Uniform WKB, Multi-instantons and Resurgent Trans-Series, Phys. Rev. D 89 (2014) 105009 [arXiv:1401.5202] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M.A. Escobar-Ruiz, E. Shuryak and A.V. Turbiner, Three-loop Correction to the Instanton Density. I. The Quartic Double Well Potential, Phys. Rev. D 92 (2015) 025046 [arXiv:1501.03993] [INSPIRE].
  12. [12]
    M.A. Escobar-Ruiz, E. Shuryak and A.V. Turbiner, Three-loop Correction to the Instanton Density. II. The sine-Gordon potential, Phys. Rev. D 92 (2015) 025047 [arXiv:1505.05115] [INSPIRE].
  13. [13]
    O. Costin, Asymptotics and Borel Summability, Chapman & Hall/CRC (2009).Google Scholar
  14. [14]
    E. Delabaere, Introduction to the Ecalle theory, in Computer Algebra and Differential Equations, Cambridge University Press (1994) [London Math. Soc. Lecture Note Ser. 193 (1994) 59].Google Scholar
  15. [15]
    D. Sauzin, Introduction to 1-summability and resurgence, arXiv:1405.0356.
  16. [16]
    M. Mariño, R. Schiappa and M. Weiss, Nonperturbative Effects and the Large-Order Behavior of Matrix Models and Topological Strings, Commun. Num. Theor. Phys. 2 (2008) 349 [arXiv:0711.1954] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    S. Pasquetti and R. Schiappa, Borel and Stokes Nonperturbative Phenomena in Topological String Theory and c = 1 Matrix Models, Ann. Henri Poincaré 11 (2010) 351 [arXiv:0907.4082] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    I. Aniceto, R. Schiappa and M. Vonk, The Resurgence of Instantons in String Theory, Commun. Num. Theor. Phys. 6 (2012) 339 [arXiv:1106.5922] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    M. Mariño, Lectures on non-perturbative effects in large-N gauge theories, matrix models and strings, Fortsch. Phys. 62 (2014) 455 [arXiv:1206.6272] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    J. Kallen and M. Mariño, Instanton effects and quantum spectral curves, arXiv:1308.6485 [INSPIRE].
  22. [22]
    J. Kallen, The spectral problem of the ABJ Fermi gas, arXiv:1407.0625 [INSPIRE].
  23. [23]
    X.-f. Wang, X. Wang and M.-x. Huang, A Note on Instanton Effects in ABJM Theory, JHEP 11 (2014) 100 [arXiv:1409.4967] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Grassi, Y. Hatsuda and M. Mariño, Quantization conditions and functional equations in ABJ(M) theories, arXiv:1410.7658 [INSPIRE].
  25. [25]
    R.C. Santamaría, J.D. Edelstein, R. Schiappa and M. Vonk, Resurgent Transseries and the Holomorphic Anomaly, arXiv:1308.1695 [INSPIRE].
  26. [26]
    R. Couso-Santamaría, J.D. Edelstein, R. Schiappa and M. Vonk, Resurgent Transseries and the Holomorphic Anomaly: Nonperturbative Closed Strings in Local \( \mathbb{C}{\mathrm{\mathbb{P}}}^2 \), Commun. Math. Phys. 338 (2015) 285 [arXiv:1407.4821] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    I. Aniceto, J.G. Russo and R. Schiappa, Resurgent Analysis of Localizable Observables in Supersymmetric Gauge Theories, JHEP 03 (2015) 172 [arXiv:1410.5834] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    R. Dabrowski and G.V. Dunne, Fractionalized Non-Self-Dual Solutions in the \( \mathbb{C}{\mathrm{\mathbb{P}}}^{N-1} \) Model, Phys. Rev. D 88 (2013) 025020 [arXiv:1306.0921] [INSPIRE].ADSGoogle Scholar
  29. [29]
    S. Bolognesi and W. Zakrzewski, Clustering and decomposition for non-BPS solutions of the \( \mathbb{C}{\mathrm{\mathbb{P}}}^{N-1} \) models, Phys. Rev. D 89 (2014) 065013 [arXiv:1310.8247] [INSPIRE].ADSGoogle Scholar
  30. [30]
    F. Bruckmann and T. Sulejmanpasic, Nonlinear σ-models at nonzero chemical potential: breaking up instantons and the phase diagram, Phys. Rev. D 90 (2014) 105010 [arXiv:1408.2229] [INSPIRE].ADSGoogle Scholar
  31. [31]
    T. Misumi, M. Nitta and N. Sakai, Classifying bions in Grassmann σ-models and non-Abelian gauge theories by D-branes, Prog. Theor. Exp. Phys. 2015 (2015) 033B02 [arXiv:1409.3444] [INSPIRE].
  32. [32]
    M. Nitta, Fractional instantons and bions in the O(N ) model with twisted boundary conditions, JHEP 03 (2015) 108 [arXiv:1412.7681] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  33. [33]
    M. Nitta, Fractional instantons and bions in the principal chiral model on \( {\mathbb{R}}^2\times {S}^1 \) with twisted boundary conditions, JHEP 08 (2015) 063 [arXiv:1503.06336] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    Y. Tanizaki, Lefschetz-thimble techniques for path integral of zero-dimensional O(n) sigma-models, Phys. Rev. D 91 (2015) 036002 [arXiv:1412.1891] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    T. Kanazawa and Y. Tanizaki, Structure of Lefschetz thimbles in simple fermionic systems, JHEP 03 (2015) 044 [arXiv:1412.2802] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    Y. Tanizaki, H. Nishimura and K. Kashiwa, Evading the sign problem in the mean-field approximation through Lefschetz-thimble path integral, Phys. Rev. D 91 (2015) 101701(R) [arXiv:1504.02979] [INSPIRE].
  37. [37]
    G. Basar and G.V. Dunne, Resurgence and the Nekrasov-Shatashvili limit: connecting weak and strong coupling in the Mathieu and Lamé systems, JHEP 02 (2015) 160 [arXiv:1501.05671] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M.P. Heller and M. Spalinski, Hydrodynamics Beyond the Gradient Expansion: Resurgence and Resummation, Phys. Rev. Lett. 115 (2015) 072501 [arXiv:1503.07514] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Factorized S-Matrices in Two-Dimensions as the Exact Solutions of Certain Relativistic Quantum Field Models, Annals Phys. 120 (1979) 253 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Wilson’s Operator Expansion: Can It Fail?, Nucl. Phys. B 249 (1985) 445 [Yad. Fiz. 41 (1985) 1063] [INSPIRE].
  41. [41]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Two-Dimensional σ-models: Modeling Nonperturbative Effects of Quantum Chromodynamics, Phys. Rept. 116 (1984) 103 [Sov. J. Part. Nucl. 17 (1986) 204] [Fiz. Elem. Chast. Atom. Yadra 17 (1986) 472] [INSPIRE].
  42. [42]
    A.M. Polyakov and P.B. Wiegmann, Theory of Nonabelian Goldstone Bosons, Phys. Lett. B 131 (1983) 121 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J.A. Gracey, Non-perturbative effects in the exact S-matrices of the O(N ) gross-neveu and supersymmetric σ models, Phys. Lett. B 215 (1988) 505 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    P. Hasenfratz, M. Maggiore and F. Niedermayer, The Exact mass gap of the O(3) and O(4) nonlinear σ-models in D = 2, Phys. Lett. B 245 (1990) 522 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    P. Hasenfratz and F. Niedermayer, The Exact mass gap of the O(N ) σ-model for arbitrary N ≥3 in d = 2, Phys. Lett. B 245 (1990) 529 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    D. Volin, From the mass gap in O(N ) to the non-Borel-summability in O(3) and O(4) σ-models, Phys. Rev. D 81 (2010) 105008 [arXiv:0904.2744] [INSPIRE].ADSGoogle Scholar
  47. [47]
    M. Beneke, V.M. Braun and N. Kivel, The Operator product expansion, nonperturbative couplings and the Landau pole: Lessons from the O(N ) σ-model, Phys. Lett. B 443 (1998) 308 [hep-ph/9809287] [INSPIRE].
  48. [48]
    E. Abdalla, M. Abdalla and K. Rothe, Non-perturbative Methods in Two-Dimensional Quantum Field Theory, World Scientific, Singapore (2001).CrossRefMATHGoogle Scholar
  49. [49]
    W.J. Zakrzewski, Low Dimensional Sigma Models, CRC Press (1989).Google Scholar
  50. [50]
    F. David, The Operator Product Expansion and Renormalons: A Comment, Nucl. Phys. B 263 (1986) 637 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A. Armoni, M. Shifman and G. Veneziano, Exact results in nonsupersymmetric large-N orientifold field theories, Nucl. Phys. B 667 (2003) 170 [hep-th/0302163] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  52. [52]
    P. Kovtun, M. Ünsal and L.G. Yaffe, Necessary and sufficient conditions for non-perturbative equivalences of large-Nc orbifold gauge theories, JHEP 07 (2005) 008 [hep-th/0411177] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    P. Kovtun, M. Ünsal and L.G. Yaffe, Nonperturbative equivalences among large-Nc gauge theories with adjoint and bifundamental matter fields, JHEP 12 (2003) 034 [hep-th/0311098] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    F. David, On the Ambiguity of Composite Operators, IR Renormalons and the Status of the Operator Product Expansion, Nucl. Phys. B 234 (1984) 237 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M. Ünsal, Theta dependence, sign problems and topological interference, Phys. Rev. D 86 (2012) 105012 [arXiv:1201.6426] [INSPIRE].ADSGoogle Scholar
  56. [56]
    A. Bhoonah, E. Thomas and A.R. Zhitnitsky, Metastable vacuum decay and θ dependence in gauge theory. Deformed QCD as a toy model, Nucl. Phys. B 890 (2014) 30 [arXiv:1407.5121] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  57. [57]
    M.M. Anber, Θ dependence of the deconfining phase transition in pure SU(Nc) Yang-Mills theories, Phys. Rev. D 88 (2013) 085003 [arXiv:1302.2641] [INSPIRE].ADSGoogle Scholar
  58. [58]
    E. Poppitz, T. Schäfer and M. Ünsal, Universal mechanism of (semi-classical) deconfinement and θ-dependence for all simple groups, JHEP 03 (2013) 087 [arXiv:1212.1238] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  59. [59]
    M.M. Anber, E. Poppitz and B. Teeple, Deconfinement and continuity between thermal and (super) Yang-Mills theory for all gauge groups, JHEP 09 (2014) 040 [arXiv:1406.1199] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    E. Witten, Large-N Chiral Dynamics, Annals Phys. 128 (1980) 363 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    E. Witten, Theta dependence in the large-N limit of four-dimensional gauge theories, Phys. Rev. Lett. 81 (1998) 2862 [hep-th/9807109] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    E. Vicari and H. Panagopoulos, θ dependence of SU(N ) gauge theories in the presence of a topological term, Phys. Rept. 470 (2009) 93 [arXiv:0803.1593] [INSPIRE].
  63. [63]
    M.E. Peskin and D.V. Schroeder, An Introduction to quantum field theory, Addison-Wesley, Reading U.S.A. (1995).Google Scholar
  64. [64]
    A.Yu. Morozov, A.M. Perelomov and M.A. Shifman, Exact Gell-Mann-Low function of supersymmetric Kähler sigma models, Nucl. Phys. B 248 (1984) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    J.L.M. Barbosa, On Minimal Immersions of S2 into S2m, Trans. Am. Math. Soc. 210 (1975) 75.Google Scholar
  66. [66]
    W.-D. Garber, S.N.M. Ruijsenaars and E. Seiler, On Finite Action Solutions of the Nonlinear σ Model, Annals Phys. 119 (1979) 305 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  67. [67]
    H.J. Borchers and W.-D. Garber, Analyticity of solutions of the O(N ) nonlinear σ-model, Commun. Math. Phys. 71 (1980) 299 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  68. [68]
    A.M. Din and W.J. Zakrzewski, Stability Properties of Classical Solutions to Nonlinear σ Models, Nucl. Phys. B 168 (1980) 173 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    A.M. Din and W.J. Zakrzewski, Embeddings of Classical Solutions of 02p+1 Nonlinear σ Models in \( \mathbb{C}{\mathrm{\mathbb{P}}}^{n-1} \) Models, Lett. Nuovo Cim. 28 (1980) 121 [INSPIRE].CrossRefGoogle Scholar
  70. [70]
    K.-M. Lee and P. Yi, Monopoles and instantons on partially compactified D-branes, Phys. Rev. D 56 (1997) 3711 [hep-th/9702107] [INSPIRE].ADSMathSciNetGoogle Scholar
  71. [71]
    T.C. Kraan and P. van Baal, Periodic instantons with nontrivial holonomy, Nucl. Phys. B 533 (1998) 627 [hep-th/9805168] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  72. [72]
    J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University Press (2000).Google Scholar
  73. [73]
    K. Uhlenbeck, Harmonic maps into Lie groups: classical solutions of the chiral model, J. Diff. Geom. 30 (1989) 1.MathSciNetCrossRefMATHGoogle Scholar
  74. [74]
    R.S. Ward, Classical solutions of the chiral model, unitons and holomorphic vector bundles, Commun. Math. Phys. 128 (1990) 319 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  75. [75]
    G.V. Dunne, Chern-Simons solitons, Toda theories and the chiral model, Commun. Math. Phys. 150 (1992) 519 [hep-th/9204056] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  76. [76]
    G. ’t Hooft, Can We Make Sense Out of Quantum Chromodynamics?, in The Whys Of Subnuclear Physics, A. Zichichi ed., Plenum, New York U.S.A. (1979), p. 943.Google Scholar
  77. [77]
    G. Parisi, Singularities of the Borel Transform in Renormalizable Theories, Phys. Lett. B 76 (1978) 65 [INSPIRE].ADSMathSciNetGoogle Scholar
  78. [78]
    G. Parisi, On Infrared Divergences, Nucl. Phys. B 150 (1979) 163 [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    A.H. Mueller, On the Structure of Infrared Renormalons in Physical Processes at High-Energies, Nucl. Phys. B 250 (1985) 327 [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    M. Beneke, Renormalons, Phys. Rept. 317 (1999) 1 [hep-ph/9807443] [INSPIRE].
  81. [81]
    M. Beneke and V.M. Braun, Renormalons and power corrections, in At the Frontier of Particle Physics. Vol. 3, M. Shifman ed., World Scientific, Singapore (2001), p. 1719 [hep-ph/0010208] [INSPIRE].
  82. [82]
    M. Shifman, New and Old about Renormalons: in Memoriam Kolya Uraltsev, Int. J. Mod. Phys. A 30 (2015) 1543001 [arXiv:1310.1966] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  83. [83]
    F. Bruckmann, Instanton constituents in the O(3) model at finite temperature, Phys. Rev. Lett. 100 (2008) 051602 [arXiv:0707.0775] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    W. Brendel, F. Bruckmann, L. Janssen, A. Wipf and C. Wozar, Instanton constituents and fermionic zero modes in twisted \( \mathbb{C}{\mathrm{\mathbb{P}}}^n \) models, Phys. Lett. B 676 (2009) 116 [arXiv:0902.2328] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  85. [85]
    M. Eto et al., Non-Abelian vortices on cylinder: Duality between vortices and walls, Phys. Rev. D 73 (2006) 085008 [hep-th/0601181] [INSPIRE].ADSGoogle Scholar
  86. [86]
    F.D.M. Haldane, Nonlinear field theory of large spin Heisenberg antiferromagnets. Semiclassically quantized solitons of the one-dimensional easy Axis Neel state, Phys. Rev. Lett. 50 (1983) 1153 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  87. [87]
    A.J. Macfarlane, Generalizations of σ Models and C pN Models and Instantons, Phys. Lett. B 82 (1979) 239 [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    A.M. Din and W.J. Zakrzewski, Classical Solutions in Grassmannian σ Models, Lett. Math. Phys. 5 (1981) 553 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  89. [89]
    J. Burzlaff, Nonselfdual Solutions of SU(3) Yang-Mills Theory and a Two-dimensional Abelian Higgs Model, Phys. Rev. D 24 (1981) 546 [INSPIRE].ADSGoogle Scholar
  90. [90]
    L.M. Sibner, R.J. Sibner and K. Uhlenbeck, Solutions to Yang-Mills equations that are not self-dual, Proc. Natl. Acad. Sci. U.S.A. 86 (1989) 8610.ADSMathSciNetCrossRefMATHGoogle Scholar
  91. [91]
    L. Sadun and J. Segert, Stationary Points of the Yang-Mills Action, Comm. Pure and Appl. Math. 45 (1992) 461MathSciNetCrossRefMATHGoogle Scholar
  92. [92]
    L. Sadun and J. Segert, Nonselfdual Yang-Mills connections with quadrupole symmetry, Commun. Math. Phys. 145 (1992) 363 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  93. [93]
    G. Bor, Yang-Mills fields which are not selfdual, Commun. Math. Phys. 145 (1992) 393 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  94. [94]
    L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP 11 (2007) 019 [arXiv:0708.0672] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  95. [95]
    B. Basso, G.P. Korchemsky and J. Kotanski, Cusp anomalous dimension in maximally supersymmetric Yang-Mills theory at strong coupling, Phys. Rev. Lett. 100 (2008) 091601 [arXiv:0708.3933] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  96. [96]
    B. Basso and G.P. Korchemsky, Embedding nonlinear O(6) σ-model into N = 4 super-Yang-Mills theory, Nucl. Phys. B 807 (2009) 397 [arXiv:0805.4194] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  97. [97]
    A. Behtash, T. Sulejmanpasic, T. Schäfer and M. Ünsal, Hidden Topological Angles in Path Integrals, Phys. Rev. Lett. 115 (2015) 041601 [arXiv:1502.06624] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  98. [98]
    D. Dorigoni and Y. Hatsuda, Resurgence of the Cusp Anomalous Dimension, arXiv:1506.03763 [INSPIRE].
  99. [99]
    I. Aniceto, The Resurgence of the Cusp Anomalous Dimension, arXiv:1506.03388 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of ConnecticutStorrsUnited States
  2. 2.Department of PhysicsNorth Carolina State UniversityRaleighUnited States

Personalised recommendations