Journal of High Energy Physics

, 2012:116 | Cite as

The black hole information problem beyond quantum theory

  • Markus P. Müller
  • Jonathan Oppenheim
  • Oscar C.O. Dahlsten


The origin of black hole entropy and the black hole information problem provide important clues for trying to piece together a quantum theory of gravity. Thus far, discussions on this topic have mostly assumed that in a consistent theory of gravity and quantum mechanics, quantum theory will be unmodified. Here, we examine the black hole information problem in the context of generalisations of quantum theory. In particular, we examine black holes in the setting of generalised probabilistic theories, in which quantum theory and classical probability theory are special cases. We compute the time it takes information to escape a black hole, assuming that information is preserved. We find that under some very general assumptions, the arguments of Page (that information should escape the black hole after half the Hawking photons have been emitted), and the black-hole mirror result of Hayden and Preskill (that information can escape quickly) need to be modified. The modification is determined entirely by what we call the Wootters-Hardy parameter associated with a theory. We find that although the information leaves the black hole after enough photons have been emitted, it is fairly generic that it fails to appear outside the black hole at this point — something impossible in quantum theory due to the no-hiding theorem. The information is neither inside the black hole, nor outside it, but is delocalised. Our central technical result is an information decoupling theorem which holds in the generalised probabilistic framework.


Black Holes Models of Quantum Gravity 


  1. [1]
    S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206–206] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    S. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976) [INSPIRE].
  4. [4]
    S. Hawking, The unpredictability of quantum gravity, Commun. Math. Phys. 87 (1982) 395 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. [5]
    J. Preskill, Do black holes destroy information?, hep-th/9209058 [INSPIRE].
  6. [6]
    T. Banks, L. Susskind and M.E. Peskin, Difficulties for the evolution of pure states into mixed states, Nucl. Phys. B 244 (1984) 125 [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    W.G. Unruh and R.M. Wald, On evolution laws taking pure states to mixed states in quantum field theory, Phys. Rev. D 52 (1995) 2176 [hep-th/9503024] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    J. Oppenheim and B. Reznik, Fundamental destruction of information and conservation laws, arXiv:0902.2361 [INSPIRE].
  9. [9]
    L. Hardy, Quantum theory from five reasonable axioms, quant-ph/0101012 [INSPIRE].
  10. [10]
    L.A. Khalfin and B.S. Tsirelson, Quantum and quasi-classical analogs of bell inequalities, World Scientific, Singapore (1985), pg. 441.Google Scholar
  11. [11]
    B.S. Tsirelson, Some results and problems on quantum bell-type inequalities, Hadronic J. Suppl. 8 (1993) 329.MathSciNetzbMATHGoogle Scholar
  12. [12]
    S. Popescu and D. Rohrlich, Quantum nonlocality as an axiom, Found. Phys. 24 (1994) 379.MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    J. Barrett, Information processing in generalized probabilistic theories, Phys. Rev. A 75 (2007)032304 [quant-ph/0508211].ADSGoogle Scholar
  14. [14]
    B. Mielnik, Generalized quantum mechanics, Commun. Math. Phys. 37 (1974) 221 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    L. Susskind and L. Thorlacius, Hawking radiation and back reaction, Nucl. Phys. B 382 (1992)123 [hep-th/9203054] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    H. Barnum, J. Barrett, M. Leifer and A. Wilce, Generalized no-broadcasting theorem, Phys. Rev. Lett. 99 (2007) 240501 [arXiv:0707.0620].ADSCrossRefGoogle Scholar
  17. [17]
    G. ’t Hooft, On the quantum structure of a black hole, Nucl. Phys. B 256 (1985) 727 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    Y. Aharonov, A. Casher and S. Nussinov, The unitarity puzzle and Planck mass stable particles, Phys. Lett. B 191 (1987) 51 [INSPIRE].ADSGoogle Scholar
  19. [19]
    R.D. Carlitz and R.S. Willey, The lifetime of a black hole, Phys. Rev. D 36 (1987) 2336 [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    D.N. Page, Is black hole evaporation predictable?, Phys. Rev. Lett. 44 (1980) 301 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    G. ’t Hooft, The black hole interpretation of string theory, Nucl. Phys. B 335 (1990) 138 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    J. Smolin and J. Oppenheim, Locking information in black holes, Phys. Rev. Lett. 96 (2006) 081302 [hep-th/0507287] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    S.L. Braunstein and K. Życzkowski, Entangled black holes as ciphers of hidden information, arXiv:0907.1190 [INSPIRE].
  26. [26]
    Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Horodecki, J. Oppenheim and A. Winter, Quantum state merging and negative information, Commun. Math. Phys. 269 (2007) 107 [quant-ph/0512247].MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. [28]
    A. Abeyesinghe, I. Devetak, P. Hayden and A. Winter, The mother of all protocols: restructuring quantum informations family tree, Proc. Roy. Soc. Lond. A 465 (2009) 2537 [quant-ph/0606225].MathSciNetADSGoogle Scholar
  29. [29]
    S.L. Braunstein and A.K. Pati, Quantum information cannot be completely hidden in correlations: Implications for the black-hole information paradox, Phys. Rev. Lett. 98 (2007) 080502 [gr-qc/0603046] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    A. Uhlmann, Thetransition probabilityin the state space of a*-algebra, Rept. Math. Phys. 9 (1976)273.MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. [31]
    W.K. Wootters, Quantum mechanics without probability amplitudes, Found. Phys. 16 (1986) 391.MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    B. Simon, Graduate Studies in Mathematics. Vol. 10: Representations of Finite and Compact Groups, American Mathematical Society, Providence U.S.A. (1995).Google Scholar
  33. [33]
    S.L. Braunstein and M.K. Patra, Black hole evaporation rates without spacetime, Phys. Rev. Lett. 107 (2011) 071302 [arXiv:1102.2326] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M.P. Müller, O.C.O. Dahlsten and V. Vedral, Unifying typical entanglement and coin tossing: on randomization in probabilistic theories, Commun. Math. Phys. in press (2012), arXiv:1107.6029.
  35. [35]
    D.N. Page, Information in black hole radiation, Phys. Rev. Lett. 71 (1993) 3743 [hep-th/9306083] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. [36]
    C. Hein, Entropy in operational statistics and quantum logic, Found. Phys. 9 (1979) 751.MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    H. Barnum et al., Entropy and information causality in general probabilistic theories, New J. Phys. 12 (2010) 033024 [arXiv:0909.5075].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    A.J. Short and S. Wehner, Entropy in general physical theories, New J. Phys. 12 (2010) 033023 [arXiv:0909.4801].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    M.P. Müller and J. Oppenheim, in preparation.Google Scholar
  40. [40]
    C. Bennett and S. Wiesner, Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69 (1992) 2881.MathSciNetADSzbMATHCrossRefGoogle Scholar
  41. [41]
    J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton U.S.A. (1955).zbMATHGoogle Scholar
  42. [42]
    M.P. Müller and C. Ududec, Structure of reversible computation determines the self-duality of quantum theory, Phys. Rev. Lett. 108 (2012) 130401 [arXiv:1110.3516].CrossRefGoogle Scholar
  43. [43]
    J. Bellissard and B. Iochum, Homogeneous self dual cones versus Jordan algebras. The theory revisited, Ann. Inst. Fourier 28 (1978) 27.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Markus P. Müller
    • 1
  • Jonathan Oppenheim
    • 2
    • 3
  • Oscar C.O. Dahlsten
    • 4
    • 5
  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.Department of Physics & AstronomyUniversity College of London, and London Interdisciplinary Network for Quantum ScienceLondonU.K.
  3. 3.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeU.K.
  4. 4.Clarendon Laboratory, Department of PhysicsUniversity of OxfordOxfordU.K.
  5. 5.Center for Quantum TechnologyNational University of SingaporeSingaporeSingapore

Personalised recommendations