Skip to main content
Log in

The black hole information problem beyond quantum theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The origin of black hole entropy and the black hole information problem provide important clues for trying to piece together a quantum theory of gravity. Thus far, discussions on this topic have mostly assumed that in a consistent theory of gravity and quantum mechanics, quantum theory will be unmodified. Here, we examine the black hole information problem in the context of generalisations of quantum theory. In particular, we examine black holes in the setting of generalised probabilistic theories, in which quantum theory and classical probability theory are special cases. We compute the time it takes information to escape a black hole, assuming that information is preserved. We find that under some very general assumptions, the arguments of Page (that information should escape the black hole after half the Hawking photons have been emitted), and the black-hole mirror result of Hayden and Preskill (that information can escape quickly) need to be modified. The modification is determined entirely by what we call the Wootters-Hardy parameter associated with a theory. We find that although the information leaves the black hole after enough photons have been emitted, it is fairly generic that it fails to appear outside the black hole at this point — something impossible in quantum theory due to the no-hiding theorem. The information is neither inside the black hole, nor outside it, but is delocalised. Our central technical result is an information decoupling theorem which holds in the generalised probabilistic framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206–206] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. S. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976) [INSPIRE].

  4. S. Hawking, The unpredictability of quantum gravity, Commun. Math. Phys. 87 (1982) 395 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. J. Preskill, Do black holes destroy information?, hep-th/9209058 [INSPIRE].

  6. T. Banks, L. Susskind and M.E. Peskin, Difficulties for the evolution of pure states into mixed states, Nucl. Phys. B 244 (1984) 125 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. W.G. Unruh and R.M. Wald, On evolution laws taking pure states to mixed states in quantum field theory, Phys. Rev. D 52 (1995) 2176 [hep-th/9503024] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. J. Oppenheim and B. Reznik, Fundamental destruction of information and conservation laws, arXiv:0902.2361 [INSPIRE].

  9. L. Hardy, Quantum theory from five reasonable axioms, quant-ph/0101012 [INSPIRE].

  10. L.A. Khalfin and B.S. Tsirelson, Quantum and quasi-classical analogs of bell inequalities, World Scientific, Singapore (1985), pg. 441.

    Google Scholar 

  11. B.S. Tsirelson, Some results and problems on quantum bell-type inequalities, Hadronic J. Suppl. 8 (1993) 329.

    MathSciNet  MATH  Google Scholar 

  12. S. Popescu and D. Rohrlich, Quantum nonlocality as an axiom, Found. Phys. 24 (1994) 379.

    Article  MathSciNet  ADS  Google Scholar 

  13. J. Barrett, Information processing in generalized probabilistic theories, Phys. Rev. A 75 (2007)032304 [quant-ph/0508211].

    ADS  Google Scholar 

  14. B. Mielnik, Generalized quantum mechanics, Commun. Math. Phys. 37 (1974) 221 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. L. Susskind and L. Thorlacius, Hawking radiation and back reaction, Nucl. Phys. B 382 (1992)123 [hep-th/9203054] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. H. Barnum, J. Barrett, M. Leifer and A. Wilce, Generalized no-broadcasting theorem, Phys. Rev. Lett. 99 (2007) 240501 [arXiv:0707.0620].

    Article  ADS  Google Scholar 

  17. G. ’t Hooft, On the quantum structure of a black hole, Nucl. Phys. B 256 (1985) 727 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. Y. Aharonov, A. Casher and S. Nussinov, The unitarity puzzle and Planck mass stable particles, Phys. Lett. B 191 (1987) 51 [INSPIRE].

    ADS  Google Scholar 

  19. R.D. Carlitz and R.S. Willey, The lifetime of a black hole, Phys. Rev. D 36 (1987) 2336 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. D.N. Page, Is black hole evaporation predictable?, Phys. Rev. Lett. 44 (1980) 301 [INSPIRE].

    Article  ADS  Google Scholar 

  21. G. ’t Hooft, The black hole interpretation of string theory, Nucl. Phys. B 335 (1990) 138 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. J. Smolin and J. Oppenheim, Locking information in black holes, Phys. Rev. Lett. 96 (2006) 081302 [hep-th/0507287] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. S.L. Braunstein and K. Życzkowski, Entangled black holes as ciphers of hidden information, arXiv:0907.1190 [INSPIRE].

  26. Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].

    Article  ADS  Google Scholar 

  27. M. Horodecki, J. Oppenheim and A. Winter, Quantum state merging and negative information, Commun. Math. Phys. 269 (2007) 107 [quant-ph/0512247].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. A. Abeyesinghe, I. Devetak, P. Hayden and A. Winter, The mother of all protocols: restructuring quantum informations family tree, Proc. Roy. Soc. Lond. A 465 (2009) 2537 [quant-ph/0606225].

    MathSciNet  ADS  Google Scholar 

  29. S.L. Braunstein and A.K. Pati, Quantum information cannot be completely hidden in correlations: Implications for the black-hole information paradox, Phys. Rev. Lett. 98 (2007) 080502 [gr-qc/0603046] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. A. Uhlmann, Thetransition probabilityin the state space of a*-algebra, Rept. Math. Phys. 9 (1976)273.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. W.K. Wootters, Quantum mechanics without probability amplitudes, Found. Phys. 16 (1986) 391.

    Article  MathSciNet  ADS  Google Scholar 

  32. B. Simon, Graduate Studies in Mathematics. Vol. 10: Representations of Finite and Compact Groups, American Mathematical Society, Providence U.S.A. (1995).

  33. S.L. Braunstein and M.K. Patra, Black hole evaporation rates without spacetime, Phys. Rev. Lett. 107 (2011) 071302 [arXiv:1102.2326] [INSPIRE].

    Article  ADS  Google Scholar 

  34. M.P. Müller, O.C.O. Dahlsten and V. Vedral, Unifying typical entanglement and coin tossing: on randomization in probabilistic theories, Commun. Math. Phys. in press (2012), arXiv:1107.6029.

  35. D.N. Page, Information in black hole radiation, Phys. Rev. Lett. 71 (1993) 3743 [hep-th/9306083] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. C. Hein, Entropy in operational statistics and quantum logic, Found. Phys. 9 (1979) 751.

    Article  MathSciNet  ADS  Google Scholar 

  37. H. Barnum et al., Entropy and information causality in general probabilistic theories, New J. Phys. 12 (2010) 033024 [arXiv:0909.5075].

    Article  MathSciNet  ADS  Google Scholar 

  38. A.J. Short and S. Wehner, Entropy in general physical theories, New J. Phys. 12 (2010) 033023 [arXiv:0909.4801].

    Article  MathSciNet  ADS  Google Scholar 

  39. M.P. Müller and J. Oppenheim, in preparation.

  40. C. Bennett and S. Wiesner, Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69 (1992) 2881.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton U.S.A. (1955).

    MATH  Google Scholar 

  42. M.P. Müller and C. Ududec, Structure of reversible computation determines the self-duality of quantum theory, Phys. Rev. Lett. 108 (2012) 130401 [arXiv:1110.3516].

    Article  Google Scholar 

  43. J. Bellissard and B. Iochum, Homogeneous self dual cones versus Jordan algebras. The theory revisited, Ann. Inst. Fourier 28 (1978) 27.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar C.O. Dahlsten.

Additional information

ArXiv ePrint: 1206.5030

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, M.P., Oppenheim, J. & Dahlsten, O.C. The black hole information problem beyond quantum theory. J. High Energ. Phys. 2012, 116 (2012). https://doi.org/10.1007/JHEP09(2012)116

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2012)116

Keywords

Navigation