Skip to main content

Correlations far from equilibrium in charged strongly coupled fluids subjected to a strong magnetic field

A preprint version of the article is available at arXiv.


Within a holographic model, we calculate the time evolution of 2-point and 1-point correlation functions (of selected operators) within a charged strongly coupled system of many particles. That system is thermalizing from an anisotropic initial charged state far from equilibrium towards equilibrium while subjected to a constant external magnetic field. One main result is that thermalization times for 2-point functions are significantly (approximately three times) larger than those of 1-point functions. Magnetic field and charge amplify this difference, generally increasing thermalization times. However, there is also a competition of scales between charge density, magnetic field, and initial anisotropy, which leads to an array of qualitative changes on the 2- and 1-point functions. There appears to be a strong effect of the medium on 2-point functions at early times, but approximately none at later times. At strong magnetic fields, an apparently universal thermalization time emerges, at which all 2-point functions appear to thermalize regardless of any other scale in the system. Hence, this time scale is referred to as saturation time scale. As extremality is approached in the purely charged case, 2- and 1-point functions appear to equilibrate at infinitely late time. We also compute 2-point functions of charged operators. Our results can be taken to model thermalization in heavy ion collisions, or thermalization in selected condensed matter systems.


  1. [1]

    P. Romatschke and U. Romatschke, Relativistic fluid dynamics in and out of equilibrium, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge U.K. )2019, arXiv:1712.05815 [INSPIRE].

  2. [2]

    G. Endrodi et al., Universal Magnetoresponse in QCD and \( \mathcal{N} \) = 4 SYM, JHEP09 (2018) 070 [arXiv:1806.09632] [INSPIRE].

  3. [3]

    U. Gürsoy et al., Charge-dependent flow induced by magnetic and electric fields in heavy ion collisions, Phys. Rev.C 98 (2018) 055201 [arXiv:1806.05288] [INSPIRE].

  4. [4]

    Y.J. Ye, Y.G. Ma, A.H. Tang and G. Wang, Effect of magnetic fields on pairs of oppositely charged particles in ultrarelativistic heavy-ion collisions, Phys. Rev.C 99 (2019) 044901 [arXiv:1810.04600] [INSPIRE].

  5. [5]

    U. Gürsoy, D. Kharzeev and K. Rajagopal, Magnetohydrodynamics, charged currents and directed flow in heavy ion collisions, Phys. Rev.C 89 (2014) 054905 [arXiv:1401.3805] [INSPIRE].

  6. [6]

    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  7. [7]

    M. Kaminski, C. F. Uhlemann, M. Bleicher and J. Schaffner-Bielich, Anomalous hydrodynamics kicks neutron stars, Phys. Lett.B 760 (2016) 170 [arXiv:1410.3833] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  9. [9]

    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

  10. [10]

    S. Ferrara and C. Fronsdal, Gauge fields as composite boundary excitations, Phys. Lett.B 433 (1998) 19 [hep-th/9802126] [INSPIRE].

  11. [11]

    E. Keski-Vakkuri, Bulk and boundary dynamics in BTZ black holes, Phys. Rev.D 59 (1999) 104001 [hep-th/9808037] [INSPIRE].

  12. [12]

    V. Balasubramanian, P. Kraus, A.E. Lawrence and S.P. Trivedi, Holographic probes of Anti-de Sitter space-times, Phys. Rev.D 59 (1999) 104021 [hep-th/9808017] [INSPIRE].

  13. [13]

    G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev.D 62 (2000) 024027 [hep-th/9909056] [INSPIRE].

  14. [14]

    S. Kalyana Rama and B. Sathiapalan, On the role of chaos in the AdS/CFT connection, Mod. Phys. Lett.A 14 (1999) 2635 [hep-th/9905219] [INSPIRE].

  15. [15]

    U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Spherically collapsing matter in AdS, holography and shellons, Nucl. Phys.B 563 (1999) 279 [hep-th/9905227] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  16. [16]

    U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Vacua, propagators and holographic probes in AdS/CFT, JHEP01 (1999) 002 [hep-th/9812007] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Black hole formation in AdS and thermalization on the boundary, JHEP02 (2000) 039 [hep-th/9912209] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  18. [18]

    V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev.D 61 (2000) 044007 [hep-th/9906226] [INSPIRE].

  19. [19]

    J. Aparicio and E. Lopez, Evolution of two-point functions from holography, JHEP12 (2011) 082 [arXiv:1109.3571] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  20. [20]

    J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic evolution of entanglement entropy, JHEP11 (2010) 149 [arXiv:1006.4090] [INSPIRE].

    ADS  MATH  Google Scholar 

  21. [21]

    V. Balasubramanian et al., Holographic thermalization, Phys. Rev.D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].

  22. [22]

    E. Caceres and A. Kundu, Holographic thermalization with chemical potential, JHEP09 (2012) 055 [arXiv:1205.2354] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    H. Ebrahim and M. Headrick, Instantaneous thermalization in holographic plasmas, arXiv:1010.5443 [INSPIRE].

  24. [24]

    V. Keranen, E. Keski-Vakkuri and L. Thorlacius, Thermalization and entanglement following a non-relativistic holographic quench, Phys. Rev.D 85 (2012) 026005 [arXiv:1110.5035] [INSPIRE].

  25. [25]

    G. Camilo, B. Cuadros-Melgar and E. Abdalla, Holographic thermalization with a chemical potential from Born-Infeld electrodynamics, JHEP02 (2015) 103 [arXiv:1412.3878] [INSPIRE].

  26. [26]

    Y.-P. Hu, X.-X. Zeng and H.-Q. Zhang, Holographic thermalization and generalized vaidya-AdS solutions in massive gravity, Phys. Lett.B 765 (2017) 120 [arXiv:1611.00677] [INSPIRE].

  27. [27]

    A. Giordano, N.E. Grandi and G.A. Silva, Holographic thermalization of charged operators, JHEP05 (2015) 016 [arXiv:1412.7953] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  28. [28]

    S.-J. Zhang, B. Wang, E. Abdalla and E. Papantonopoulos, Holographic thermalization in Gauss-Bonnet gravity with de Sitter boundary, Phys. Rev.D 91 (2015) 106010 [arXiv:1412.7073] [INSPIRE].

  29. [29]

    D. Galante and M. Schvellinger, Thermalization with a chemical potential from AdS spaces, JHEP07 (2012) 096 [arXiv:1205.1548] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    A. Dey, S. Mahapatra and T. Sarkar, Holographic thermalization with Weyl corrections, JHEP01 (2016) 088 [arXiv:1510.00232] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  31. [31]

    I.Ya. Arefeva and I.V. Volovich, On holographic thermalization and dethermalization of quark-gluon plasma, arXiv:1211.6041 [INSPIRE].

  32. [32]

    S.-J. Zhang and E. Abdalla, Holographic thermalization in charged dilaton Anti-de Sitter spacetime, Nucl. Phys.B 896 (2015) 569 [arXiv:1503.07700] [INSPIRE].

  33. [33]

    D. Garfinkle and L.A. Pando Zayas, Rapid thermalization in field theory from gravitational collapse, Phys. Rev.D 84 (2011) 066006 [arXiv:1106.2339] [INSPIRE].

  34. [34]

    D.S. Ageev and I.Ya. Aref’eva, Holographic non-equilibrium heating, JHEP03 (2018) 103 [arXiv:1704.07747] [INSPIRE].

  35. [35]

    T. Andrade, J. Casalderrey-Solana and A. Ficnar, Holographic isotropisation in Gauss-Bonnet gravity, JHEP02 (2017) 016 [arXiv:1610.08987] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  36. [36]

    S. Grozdanov and W. van der Schee, Coupling constant corrections in a holographic model of heavy ion collisions, Phys. Rev. Lett.119 (2017) 011601 [arXiv:1610.08976] [INSPIRE].

  37. [37]

    D. Grumiller and P. Romatschke, On the collision of two shock waves in AdS 5, JHEP08 (2008) 027 [arXiv:0803.3226] [INSPIRE].

  38. [38]

    L. Álvarez-Gaumé et al., Critical formation of trapped surfaces in the collision of gravitational shock waves, JHEP02 (2009) 009 [arXiv:0811.3969] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  39. [39]

    S. Lin and E. Shuryak, Grazing collisions of gravitational shock waves and entropy production in heavy ion collision, Phys. Rev.D 79 (2009) 124015 [arXiv:0902.1508] [INSPIRE].

  40. [40]

    S.S. Gubser, S.S. Pufu and A. Yarom, Off-center collisions in AdS 5with applications to multiplicity estimates in heavy-ion collisions, JHEP11 (2009) 050 [arXiv:0902.4062] [INSPIRE].

  41. [41]

    P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett.102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  42. [42]

    P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev.D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].

  43. [43]

    E. Shuryak, S.-J. Sin and I. Zahed, A gravity dual of RHIC collisions, J. Korean Phys. Soc.50 (2007) 384 [hep-th/0511199] [INSPIRE].

  44. [44]

    R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT, Phys. Rev.D 73 (2006) 045013 [hep-th/0512162] [INSPIRE].

  45. [45]

    S. Nakamura and S.-J. Sin, A holographic dual of hydrodynamics, JHEP09 (2006) 020 [hep-th/0607123] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  46. [46]

    R.A. Janik and R.B. Peschanski, Gauge/gravity duality and thermalization of a boost-invariant perfect fluid, Phys. Rev.D 74 (2006) 046007 [hep-th/0606149] [INSPIRE].

  47. [47]

    D. Bak and R.A. Janik, From static to evolving geometries: R-charged hydrodynamics from supergravity, Phys. Lett.B 645 (2007) 303 [hep-th/0611304] [INSPIRE].

  48. [48]

    S.-J. Sin, S. Nakamura and S.P. Kim, Elliptic flow, Kasner universe and holographic dual of RHIC fireball, JHEP12 (2006) 075 [hep-th/0610113] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  49. [49]

    M.P. Heller and R.A. Janik, Viscous hydrodynamics relaxation time from AdS/CFT, Phys. Rev.D 76 (2007) 025027 [hep-th/0703243] [INSPIRE].

  50. [50]

    M.P. Heller et al., Consistent holographic description of boost-invariant plasma, Phys. Rev. Lett.102 (2009) 041601 [arXiv:0805.3774] [INSPIRE].

  51. [51]

    G. Beuf, M.P. Heller, R.A. Janik and R. Peschanski, Boost-invariant early time dynamics from AdS/CFT, JHEP10 (2009) 043 [arXiv:0906.4423] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  52. [52]

    P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5spacetime, Phys. Rev. Lett.106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].

  53. [53]

    M.P. Heller, D. Mateos, W. van der Schee and D. Trancanelli, Strong coupling isotropization of non-abelian plasmas simplified, Phys. Rev. Lett.108 (2012) 191601 [arXiv:1202.0981] [INSPIRE].

  54. [54]

    J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, From full stopping to transparency in a holographic model of heavy ion collisions, Phys. Rev. Lett.111 (2013) 181601 [arXiv:1305.4919] [INSPIRE].

  55. [55]

    W. van der Schee, P. Romatschke and S. Pratt, Fully dynamical simulation of central nuclear collisions, Phys. Rev. Lett.111 (2013) 222302 [arXiv:1307.2539] [INSPIRE].

  56. [56]

    P.M. Chesler, N. Kilbertus and W. van der Schee, Universal hydrodynamic flow in holographic planar shock collisions, JHEP11 (2015) 135 [arXiv:1507.02548] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  57. [57]

    P.M. Chesler, Colliding shock waves and hydrodynamics in small systems, Phys. Rev. Lett.115 (2015) 241602 [arXiv:1506.02209] [INSPIRE].

    ADS  Google Scholar 

  58. [58]

    L. Bellantuono, P. Colangelo, F. De Fazio and F. Giannuzzi, Thermalization of a boost-invariant non-Abelian plasma: holographic approach with boundary sourcing, PoS(EPS-HEP2015) 217 [arXiv:1510.04458] [INSPIRE].

  59. [59]

    L. Bellantuono, P. Colangelo, F. De Fazio and F. Giannuzzi, On thermalization of a boost-invariant non Abelian plasma, JHEP07 (2015) 053 [arXiv:1503.01977] [INSPIRE].

    ADS  Google Scholar 

  60. [60]

    J. Casalderrey-Solana, D. Mateos, W. van der Schee and M. Triana, Holographic heavy ion collisions with baryon charge, JHEP09 (2016) 108 [arXiv:1607.05273] [INSPIRE].

    ADS  Google Scholar 

  61. [61]

    R. Critelli, R. Rougemont and J. Noronha, Holographic Bjorken flow of a hot and dense fluid in the vicinity of a critical point, Phys. Rev.D 99 (2019) 066004 [arXiv:1805.00882] [INSPIRE].

  62. [62]

    J.F. Fuini and L.G. Yaffe, Far-from-equilibrium dynamics of a strongly coupled non-Abelian plasma with non-zero charge density or external magnetic field, JHEP07 (2015) 116 [arXiv:1503.07148] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  63. [63]

    M.P. Heller, D. Mateos, W. van der Schee and M. Triana, Holographic isotropization linearized, JHEP09 (2013) 026 [arXiv:1304.5172] [INSPIRE].

    ADS  Google Scholar 

  64. [64]

    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  65. [65]

    C. Ecker, D. Grumiller and S.A. Stricker, Evolution of holographic entanglement entropy in an anisotropic system, JHEP07 (2015) 146 [arXiv:1506.02658] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  66. [66]

    C. Ecker et al., Exploring nonlocal observables in shock wave collisions, JHEP11 (2016) 054 [arXiv:1609.03676] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  67. [67]

    L.-G. Pang, G. Endrődi and H. Petersen, Magnetic-field-induced squeezing effect at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider, Phys. Rev.C 93 (2016) 044919 [arXiv:1602.06176] [INSPIRE].

  68. [68]

    M. Ammon et al., Chiral transport in strong magnetic fields from hydrodynamics & holography, to appear.

  69. [69]

    P. Kovtun, Thermodynamics of polarized relativistic matter, JHEP07 (2016) 028 [arXiv:1606.01226] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  70. [70]

    J. Hernandez and P. Kovtun, Relativistic magnetohydrodynamics, JHEP05 (2017) 001 [arXiv:1703.08757] [INSPIRE].

  71. [71]

    P. Kovtun and A. Shukla, Kubo formulas for thermodynamic transport coefficients, JHEP10 (2018) 007 [arXiv:1806.05774] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  72. [72]

    M. Ammon et al., Quasinormal modes of charged magnetic black branes & chiral magnetic transport, JHEP04 (2017) 067 [arXiv:1701.05565] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  73. [73]

    Y. Bu, T. Demircik and M. Lublinsky, Gradient resummation for nonlinear chiral transport: an insight from holography, Eur. Phys. J.C 79 (2019) 54 [arXiv:1807.11908] [INSPIRE].

  74. [74]

    Y. Bu, T. Demircik and M. Lublinsky, Nonlinear chiral transport from holography, JHEP01 (2019) 078 [arXiv:1807.08467] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  75. [75]

    Y. Bu, M. Lublinsky and A. Sharon, Anomalous transport from holography: part II, Eur. Phys. J.C 77 (2017) 194 [arXiv:1609.09054] [INSPIRE].

  76. [76]

    Y. Bu, M. Lublinsky and A. Sharon, Anomalous transport from holography: part I, JHEP11 (2016) 093 [arXiv:1608.08595] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  77. [77]

    S. Grozdanov and N. Poovuttikul, Generalised global symmetries in holography: magnetohydrodynamic waves in a strongly interacting plasma, JHEP04 (2019) 141 [arXiv:1707.04182] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  78. [78]

    S. Grozdanov, A. Lucas and N. Poovuttikul, Holography and hydrodynamics with weakly broken symmetries, Phys. Rev.D 99 (2019) 086012 [arXiv:1810.10016] [INSPIRE].

  79. [79]

    J. Armas and A. Jain, Magnetohydrodynamics as superfluidity, Phys. Rev. Lett.122 (2019) 141603 [arXiv:1808.01939] [INSPIRE].

    ADS  Google Scholar 

  80. [80]

    J. Armas and A. Jain, One-form superfluids & magnetohydrodynamics, arXiv:1811.04913 [INSPIRE].

  81. [81]

    S. Grozdanov, D.M. Hofman and N. Iqbal, Generalized global symmetries and dissipative magnetohydrodynamics, Phys. Rev.D 95 (2017) 096003 [arXiv:1610.07392] [INSPIRE].

  82. [82]

    H. Bondi, Gravitational waves in general relativity, Nature186 (1960) 535 [INSPIRE].

    ADS  MATH  Google Scholar 

  83. [83]

    R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond.A 270 (1962) 103.

  84. [84]

    P.M. Chesler and L.G. Yaffe, Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes, JHEP07 (2014) 086 [arXiv:1309.1439] [INSPIRE].

    ADS  MATH  Google Scholar 

  85. [85]

    J. Boyd, Chebyshev and Fourier spectral methods, Dover Publications Inc., U.S.A. (2000).

  86. [86]

    W. van der Schee, Gravitational collisions and the quark-gluon plasma, Ph.D. thesis, Utrecht University, Utrecht, The Netherlands (2014).

  87. [87]

    S. Janiszewski and M. Kaminski, Quasinormal modes of magnetic and electric black branes versus far from equilibrium anisotropic fluids, Phys. Rev.D 93 (2016) 025006 [arXiv:1508.06993] [INSPIRE].

  88. [88]

    E. D’Hoker and P. Kraus, Magnetic brane solutions in AdS, JHEP10 (2009) 088 [arXiv:0908.3875] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  89. [89]

    M. Ammon et al., Holographic quenches and anomalous transport, JHEP09 (2016) 131 [arXiv:1607.06817] [INSPIRE].

    ADS  Google Scholar 

  90. [90]

    M. Ammon, J. Leiber and R.P. Macedo, Phase diagram of 4D field theories with chiral anomaly from holography, JHEP03 (2016) 164 [arXiv:1601.02125] [INSPIRE].

  91. [91]

    H.-J. Matschull, Black hole creation in (2 + 1)-dimensions, Class. Quant. Grav.16 (1999) 1069 [gr-qc/9809087] [INSPIRE].

  92. [92]

    W.H. Press et al., Numerical recipes; the art of scientific computing, 3rd edition, Cambridge University Press, Cambridge U.K. (2007).

  93. [93]

    E.J. Konopinski, What the electromagnetic vector potential describes, Am. J. Phys46 (1978) 499.

    ADS  MathSciNet  Google Scholar 

  94. [94]

    R. Baier, A.H. Mueller, D. Schiff and D.T. Son, ‘Bottom upthermalization in heavy ion collisions, Phys. Lett.B 502 (2001) 51 [hep-ph/0009237] [INSPIRE].

  95. [95]

    P. Glorioso and D.T. Son, Effective field theory of magnetohydrodynamics from generalized global symmetries, arXiv:1811.04879 [INSPIRE].

  96. [96]

    J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP01 (2009) 055 [arXiv:0809.2488] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  97. [97]

    N. Banerjee et al., Hydrodynamics from charged black branes, JHEP01 (2011) 094 [arXiv:0809.2596] [INSPIRE].

    ADS  MATH  Google Scholar 

  98. [98]

    D.T. Son and P. Surowka, Hydrodynamics with triangle anomalies, Phys. Rev. Lett.103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  99. [99]

    M. Haack, D. Sarkar and A. Yarom, Probing anomalous driving, JHEP04 (2019) 034 [arXiv:1812.08210] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  100. [100]

    M.F. Wondrak, M. Kaminski, P. Nicolini and M. Bleicher, AdS/CFT far from equilibrium in a Vaidya setup, J. Phys. Conf. Ser.942 (2017) 012020 [arXiv:1711.08835] [INSPIRE].

    Google Scholar 

  101. [101]

    T. Ishii, Notes on frequencies and timescales in nonequilibrium Greens functions, arXiv:1605.08387 [INSPIRE].

  102. [102]

    S. Banerjee et al., Time-dependence of the holographic spectral function: diverse routes to thermalisation, JHEP08 (2016) 048 [arXiv:1603.06935] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  103. [103]

    M. Wondrak, M. Kaminski and M. Bleicher, Shear transport far from equilibrium, to appear.

  104. [104]

    A. Mazeliauskas and J. Berges, Prescaling and far-from-equilibrium hydrodynamics in the quark-gluon plasma, Phys. Rev. Lett.122 (2019) 122301 [arXiv:1810.10554] [INSPIRE].

    ADS  Google Scholar 

  105. [105]

    P. Romatschke, Relativistic fluid dynamics far from local equilibrium, Phys. Rev. Lett.120 (2018) 012301 [arXiv:1704.08699] [INSPIRE].

  106. [106]

    C.P. Herzog and D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP03 (2003) 046 [hep-th/0212072] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  107. [107]

    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP04 (2003) 021 [hep-th/0106112] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  108. [108]

    M. Attems et al., Holographic collisions across a phase transition, Phys. Rev. Lett.121 (2018) 261601 [arXiv:1807.05175] [INSPIRE].

    ADS  Google Scholar 

  109. [109]

  110. [110]

    S. Nakamura, H. Ooguri and C.-S. Park, Gravity dual of spatially modulated phase, Phys. Rev.D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].

  111. [111]

    G.T. Horowitz, N. Iqbal and J.E. Santos, Simple holographic model of nonlinear conductivity, Phys. Rev.D 88 (2013) 126002 [arXiv:1309.5088] [INSPIRE].

  112. [112]

    A. Poole, K. Skenderis and M. Taylor, (A)dS 4in Bondi gauge, Class. Quant. Grav.36 (2019) 095005 [arXiv:1812.05369] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information



Corresponding author

Correspondence to Matthias Kaminski.

Additional information

ArXiv ePrint: 1904.11507

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cartwright, C., Kaminski, M. Correlations far from equilibrium in charged strongly coupled fluids subjected to a strong magnetic field. J. High Energ. Phys. 2019, 72 (2019).

Download citation


  • AdS-CFT Correspondence
  • Holography and condensed matter physics (AdS/CMT)
  • Holography and quark-gluon plasmas
  • Quark-Gluon Plasma