Journal of High Energy Physics

, 2019:42 | Cite as

Constructing stable de Sitter in M-theory from higher curvature corrections

  • Johan Blåbäck
  • Ulf Danielsson
  • Giuseppe Dibitetto
  • Suvendu GiriEmail author
Open Access
Regular Article - Theoretical Physics


We consider dimensional reductions of M-theory on 𝕋7/\( {\mathrm{\mathbb{Z}}}_2^3 \) with the inclusion of arbitrary metric flux and spacetime filling KK monopoles. With these ingredients at hand, we are able to construct a novel family of non-supersymmetric yet tachyon free Minkowski extrema. These solutions are supported by pure geometry with no extra need for gauge fluxes and possess a fully stable perturbative mass spectrum, up to a single flat direction. Such a direction corresponds to the overall internal volume, with respect to which the scalar potential exhibits a no-scale behavior. We then provide a mechanism that lifts the flat direction to give it a positive squared mass while turning Mkw4 into dS4. The construction makes use of the combined effect of G7 flux and higher curvature corrections. Our solution is scale separated and the quantum corrections are small. Finally we speculate on novel possibilities when it comes to scale hierarchies within a given construction of this type, and possible issues with the choice of quantum vacuum.


Flux compactifications M-Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    Supernova Search Team collaboration, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [INSPIRE].
  2. [2]
    Supernova Cosmology Project collaboration, Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [INSPIRE].
  3. [3]
    Boomerang collaboration, Cosmology from MAXIMA-1, BOOMERANG and COBE/DMR CMB observations, Phys. Rev. Lett. 86 (2001) 3475 [astro-ph/0007333] [INSPIRE].
  4. [4]
    SDSS collaboration, Cosmological parameters from SDSS and WMAP, Phys. Rev. D 69 (2004) 103501 [astro-ph/0310723] [INSPIRE].
  5. [5]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
  6. [6]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    U.H. Danielsson and T. Van Riet, What if string theory has no de Sitter vacua?, Int. J. Mod. Phys. D 27 (2018) 1830007 [arXiv:1804.01120] [INSPIRE].
  8. [8]
    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland, arXiv:1806.08362 [INSPIRE].
  9. [9]
    H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter Conjectures on the Swampland, Phys. Lett. B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    D. Andriot, On the de Sitter swampland criterion, Phys. Lett. B 785 (2018) 570 [arXiv:1806.10999] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S.K. Garg and C. Krishnan, Bounds on Slow Roll and the de Sitter Swampland, arXiv:1807.05193 [INSPIRE].
  12. [12]
    S.K. Garg, C. Krishnan and M. Zaid Zaz, Bounds on Slow Roll at the Boundary of the Landscape, JHEP 03 (2019) 029 [arXiv:1810.09406] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    Y. Akrami, R. Kallosh, A. Linde and V. Vardanyan, The Landscape, the Swampland and the Era of Precision Cosmology, Fortsch. Phys. 67 (2019) 1800075 [arXiv:1808.09440] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    M. Raveri, W. Hu and S. Sethi, Swampland Conjectures and Late-Time Cosmology, Phys. Rev. D 99 (2019) 083518 [arXiv:1812.10448] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. Font, A. Guarino and J.M. Moreno, Algebras and non-geometric flux vacua, JHEP 12 (2008) 050 [arXiv:0809.3748] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    B. de Carlos, A. Guarino and J.M. Moreno, Complete classification of Minkowski vacua in generalised flux models, JHEP 02 (2010) 076 [arXiv:0911.2876] [INSPIRE].
  17. [17]
    U. Danielsson and G. Dibitetto, On the distribution of stable de Sitter vacua, JHEP 03 (2013) 018 [arXiv:1212.4984] [INSPIRE].
  18. [18]
    J. Blabäck, U. Danielsson and G. Dibitetto, Fully stable dS vacua from generalised fluxes, JHEP 08 (2013) 054 [arXiv:1301.7073] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    C. Damian and O. Loaiza-Brito, More stable de Sitter vacua from S-dual nongeometric fluxes, Phys. Rev. D 88 (2013) 046008 [arXiv:1304.0792] [INSPIRE].
  20. [20]
    J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    M. Berg, M. Haack and B. Körs, Loop corrections to volume moduli and inflation in string theory, Phys. Rev. D 71 (2005) 026005 [hep-th/0404087] [INSPIRE].
  22. [22]
    M. Berg, M. Haack and B. Körs, On volume stabilization by quantum corrections, Phys. Rev. Lett. 96 (2006) 021601 [hep-th/0508171] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M.B. Green and S. Sethi, Supersymmetry constraints on type IIB supergravity, Phys. Rev. D 59 (1999) 046006 [hep-th/9808061] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    A. Rajaraman, On a supersymmetric completion of the R 4 term in type IIB supergravity, Phys. Rev. D 72 (2005) 125008 [hep-th/0505155] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M.F. Paulos, Higher derivative terms including the Ramond-Ramond five-form, JHEP 10 (2008) 047 [arXiv:0804.0763] [INSPIRE].
  26. [26]
    M. Berg, M. Haack and B. Körs, String loop corrections to Kähler potentials in orientifolds, JHEP 11 (2005) 030 [hep-th/0508043] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Berg, M. Haack and E. Pajer, Jumping Through Loops: On Soft Terms from Large Volume Compactifications, JHEP 09 (2007) 031 [arXiv:0704.0737] [INSPIRE].
  28. [28]
    I. Antoniadis, S. Ferrara, R. Minasian and K.S. Narain, R4 couplings in M and type-II theories on Calabi-Yau spaces, Nucl. Phys. B 507 (1997) 571 [hep-th/9707013] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M.B. Green and P. Vanhove, D instantons, strings and M-theory, Phys. Lett. B 408 (1997) 122 [hep-th/9704145] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    M.B. Green, M. Gutperle and P. Vanhove, One loop in eleven-dimensions, Phys. Lett. B 409 (1997) 177 [hep-th/9706175] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    J.G. Russo and A.A. Tseytlin, One loop four graviton amplitude in eleven-dimensional supergravity, Nucl. Phys. B 508 (1997) 245 [hep-th/9707134] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    B.S. Acharya, K. Bobkov, G. Kane, P. Kumar and D. Vaman, An M-theory Solution to the Hierarchy Problem, Phys. Rev. Lett. 97 (2006) 191601 [hep-th/0606262] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    B.S. Acharya, K. Bobkov, G.L. Kane, J. Shao and P. Kumar, The G2 -MSSM: An M-theory motivated model of Particle Physics, Phys. Rev. D 78 (2008) 065038 [arXiv:0801.0478] [INSPIRE].ADSGoogle Scholar
  34. [34]
    G. Kane, P. Kumar, R. Lu and B. Zheng, Higgs Mass Prediction for Realistic String/M Theory Vacua, Phys. Rev. D 85 (2012) 075026 [arXiv:1112.1059] [INSPIRE].
  35. [35]
    B.S. Acharya, K. Bobkov, G.L. Kane, P. Kumar and J. Shao, Explaining the Electroweak Scale and Stabilizing Moduli in M-theory, Phys. Rev. D 76 (2007) 126010 [hep-th/0701034] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    G. Kane and M.W. Winkler, Deriving the Inflaton in Compactified M-theory with a de Sitter Vacuum, arXiv:1902.02365 [INSPIRE].
  37. [37]
    J. Blabäck, D. Roest and I. Zavala, de Sitter Vacua from Nonperturbative Flux Compactifications, Phys. Rev. D 90 (2014) 024065 [arXiv:1312.5328] [INSPIRE].
  38. [38]
    U. Danielsson and G. Dibitetto, An alternative to anti-branes and O-planes?, JHEP 05 (2014) 013 [arXiv:1312.5331] [INSPIRE].
  39. [39]
    A. Guarino and G. Inverso, Single-step de Sitter vacua from nonperturbative effects with matter, Phys. Rev. D 93 (2016) 066013 [arXiv:1511.07841] [INSPIRE].ADSMathSciNetGoogle Scholar
  40. [40]
    J. Blabäck, U.H. Danielsson, G. Dibitetto and S.C. Vargas, Universal dS vacua in STU-models, JHEP 10 (2015) 069 [arXiv:1505.04283] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    K. Dasgupta and S. Mukhi, Orbifolds of M-theory, Nucl. Phys. B 465 (1996) 399 [hep-th/9512196] [INSPIRE].
  42. [42]
    B.S. Acharya, M theory, Joyce orbifolds and superYang-Mills, Adv. Theor. Math. Phys. 3 (1999) 227 [hep-th/9812205] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  43. [43]
    G. Dall’Agata and N. Prezas, N = 1 geometries for M-theory and type IIA strings with fluxes, Phys. Rev. D 69 (2004) 066004 [hep-th/0311146] [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    G. Dall’Agata and N. Prezas, Scherk-Schwarz reduction of M-theory on G2-manifolds with fluxes, JHEP 10 (2005) 103 [hep-th/0509052] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    G. Dibitetto, A. Guarino and D. Roest, Charting the landscape of N = 4 flux compactifications, JHEP 03 (2011) 137 [arXiv:1102.0239] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    U. Danielsson, G. Dibitetto and A. Guarino, KK-monopoles and G-structures in M-theory/type IIA reductions, JHEP 02 (2015) 096 [arXiv:1411.0575] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    M. Graña, J. Louis, U. Theis and D. Waldram, Quantum Corrections in String Compactifications on SU(3) Structure Geometries, JHEP 01 (2015) 057 [arXiv:1406.0958] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S.L. Shatashvili and C. Vafa, Superstrings and manifold of exceptional holonomy, Selecta Math. 1 (1995) 347 [hep-th/9407025] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  50. [50]
    M.J. Duff and S. Ferrara, Generalized mirror symmetry and trace anomalies, Class. Quant. Grav. 28 (2011) 065005 [arXiv:1009.4439] [INSPIRE].
  51. [51]
    D. Joyce, Compact Riemannian 7-manifolds with holonomy G2. I, J. Diff. Geom. 43 (1996) 291.CrossRefGoogle Scholar
  52. [52]
    D. Joyce, Compact Riemannian 7-manifolds with holonomy G2. II, J. Diff. Geom. 43 (1996) 329.Google Scholar
  53. [53]
    T. Eguchi and A.J. Hanson, Asymptotically Flat Selfdual Solutions to Euclidean Gravity, Phys. Lett. 74B (1978) 249 [INSPIRE].
  54. [54]
    M. Weissenbacher, F-theory Vacua and α-Corrections, arXiv:1901.04758 [INSPIRE].
  55. [55]
    U. Danielsson, The quantum swampland, JHEP 04 (2019) 095 [arXiv:1809.04512] [INSPIRE].
  56. [56]
    S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  57. [57]
    M. Cicoli, J.P. Conlon and F. Quevedo, Systematics of String Loop Corrections in Type IIB Calabi-Yau Flux Compactifications, JHEP 01 (2008) 052 [arXiv:0708.1873] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  58. [58]
    T.S. Bunch and P.C.W. Davies, Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting, Proc. Roy. Soc. Lond. A 360 (1978) 117 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    E. Mottola, Particle Creation in de Sitter Space, Phys. Rev. D 31 (1985) 754 [INSPIRE].ADSMathSciNetGoogle Scholar
  60. [60]
    U.H. Danielsson, A Note on inflation and transPlanckian physics, Phys. Rev. D 66 (2002) 023511 [hep-th/0203198] [INSPIRE].ADSGoogle Scholar
  61. [61]
    A.M. Polyakov, de Sitter space and eternity, Nucl. Phys. B 797 (2008) 199 [arXiv:0709.2899] [INSPIRE].
  62. [62]
    A.M. Polyakov, Decay of Vacuum Energy, Nucl. Phys. B 834 (2010) 316 [arXiv:0912.5503] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    D. Krotov and A.M. Polyakov, Infrared Sensitivity of Unstable Vacua, Nucl. Phys. B 849 (2011) 410 [arXiv:1012.2107] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    A.M. Polyakov, Infrared instability of the de Sitter space, arXiv:1209.4135 [INSPIRE].
  65. [65]
    P.R. Anderson and E. Mottola, Instability of global de Sitter space to particle creation, Phys. Rev. D 89 (2014) 104038 [arXiv:1310.0030] [INSPIRE].
  66. [66]
    P.R. Anderson and E. Mottola, Quantum vacuum instability ofeternalde Sitter space, Phys. Rev. D 89 (2014) 104039 [arXiv:1310.1963] [INSPIRE].
  67. [67]
    P.R. Anderson, E. Mottola and D.H. Sanders, Decay of the de Sitter Vacuum, Phys. Rev. D 97 (2018) 065016 [arXiv:1712.04522] [INSPIRE].ADSMathSciNetGoogle Scholar
  68. [68]
    S. Banerjee, U. Danielsson, G. Dibitetto, S. Giri and M. Schillo, Emergent de Sitter Cosmology from Decaying Anti-de Sitter Space, Phys. Rev. Lett. 121 (2018) 261301 [arXiv:1807.01570] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    J.J. Heckman, C. Lawrie, L. Lin and G. Zoccarato, F-theory and Dark Energy, arXiv:1811.01959 [INSPIRE].
  70. [70]
    J.J. Heckman, C. Lawrie, L. Lin, J. Sakstein and G. Zoccarato, Pixelated Dark Energy, arXiv:1901.10489 [INSPIRE].
  71. [71]
    Y. Hyakutake and S. Ogushi, Higher derivative corrections to eleven dimensional supergravity via local supersymmetry, JHEP 02 (2006) 068 [hep-th/0601092] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    J.T. Liu and R. Minasian, Higher-derivative couplings in string theory: dualities and the B-field, Nucl. Phys. B 874 (2013) 413 [arXiv:1304.3137] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  73. [73]
    T.W. Grimm, K. Mayer and M. Weissenbacher, Higher derivatives in Type II and M-theory on Calabi-Yau threefolds, JHEP 02 (2018) 127 [arXiv:1702.08404] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Johan Blåbäck
    • 1
  • Ulf Danielsson
    • 2
  • Giuseppe Dibitetto
    • 2
  • Suvendu Giri
    • 2
    Email author
  1. 1.Dipartimento di Fisica & Sezione INFNUniversità di Roma “Tor Vergata”RomaItaly
  2. 2.Institutionen för fysik och astronomiUppsala UniversitetUppsalaSweden

Personalised recommendations