Holographic plasmon relaxation with and without broken translations

Abstract

We study the dynamics and the relaxation of bulk plasmons in strongly coupled and quantum critical systems using the holographic framework. We analyze the dispersion relation of the plasmonic modes in detail for an illustrative class of holographic bottom-up models. Comparing to a simple hydrodynamic formula, we entangle the complicated interplay between the three least damped modes and shed light on the underlying physical processes. Such as the dependence of the plasma frequency and the effective relaxation time in terms of the electromagnetic coupling, the charge and the temperature of the system. Introducing momentum dissipation, we then identify its additional contribution to the damping. Finally, we consider the spontaneous symmetry breaking (SSB) of translational invariance. Upon dialing the strength of the SSB, we observe an increase of the longitudinal sound speed controlled by the elastic moduli and a decrease in the plasma frequency of the gapped plasmon. We comment on the condensed matter interpretation of this mechanism.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    T. Presbyter, Schedula diversarum artium, ca. 1100-1120.

  2. [2]

    S. Szunerits and R. Boukherroub, Introduction to plasmonics: advances and applications, Pan Stanford Publishing, Singapore (2015).

  3. [3]

    S. Maier, Plasmonics: fundamentals and applications, Springer, Germany (2007).

  4. [4]

    J. Jackson, Classical electrodynamics, Wiley, U.S.A. (1975).

  5. [5]

    P. Nozieres and D. Pines, Theory of quantum liquids, Advanced Books Classics, Avalon Publishing, U.K. (1999).

  6. [6]

    M. Baggioli, M. Vasin, V.V. Brazhkin and K. Trachenko, Gapped momentum states, arXiv:1904.01419 [INSPIRE].

  7. [7]

    N.D. Mermin, Existence of zero sound in a Fermi liquid, Phys. Rev.159 (1967) 161 [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    S. Conti and G. Vignale, Elasticity of an electron liquid, Phys. Rev.B 60 (1999) 7966.

  9. [9]

    M. Knupfer et al., Plasmon dispersion and the dielectric function in YBa 2Cu 4O 8single crystals, PhysicaC 230 (1994) 121.

  10. [10]

    I. Bozovic et al., Optical measurements on oriented thin YBa 2Cu 3O 7−δfilms: lack of evidence for excitonic superconductivity, Phys. Rev. Lett.59 (1987) 2219.

  11. [11]

    F. Slakey, M.V. Klein, J.P. Rice and D.M. Ginsberg, Raman investigation of the YBa 2Cu 3O 7imaginary response function, Phys. Rev.B 43 (1991) 3764.

  12. [12]

    N. Nücker et al., Plasmons and interband transitions in Bi 2Sr 2CaCu 2O 8, Phys. Rev.B 39 (1989) 12379.

  13. [13]

    N. Nücker, U. Eckern, J. Fink and P. Müller, Long-wavelength collective excitations of charge carriers in high-T csuperconductors, Phys. Rev.B 44 (1991) 7155.

  14. [14]

    M. Mitrano et al., Anomalous density fluctuations in a strange metal, Proc. Natl. Acad. Sci.115 (2018) 5392.

    ADS  Google Scholar 

  15. [15]

    A. Husain et al., Crossover of charge fluctuations across the strange metal phase diagram, arXiv:1903.04038.

  16. [16]

    U. Gran, M. Tornsö and T. Zingg, Holographic Plasmons, JHEP11 (2018) 176 [arXiv:1712.05672] [INSPIRE].

  17. [17]

    A. Romero-Bermúdez, A. Krikun, K. Schalm and J. Zaanen, Anomalous attenuation of plasmons in strange metals and holography, Phys. Rev.B 99 (2019) 235149 [arXiv:1812.03968] [INSPIRE].

  18. [18]

    P. Madden and D. Kivelson, A consistent molecular treatment of dielectric phenomena, John Wiley & Sons, U.S.A. (2007).

  19. [19]

    R.M. Hill and L.A. Dissado, Debye and non-Debye relaxation, J. Phys.C 18 (1985) 3829.

  20. [20]

    R.A. Davison, B. Goutéraux and S.A. Hartnoll, Incoherent transport in clean quantum critical metals, JHEP10 (2015) 112 [arXiv:1507.07137] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  21. [21]

    S. Grozdanov, A. Lucas and N. Poovuttikul, Holography and hydrodynamics with weakly broken symmetries, Phys. Rev.D 99 (2019) 086012 [arXiv:1810.10016] [INSPIRE].

  22. [22]

    M. Baggioli and K. Trachenko, Low frequency propagating shear waves in holographic liquids, JHEP03 (2019) 093 [arXiv:1807.10530] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  23. [23]

    M. Baggioli and K. Trachenko, Maxwell interpolation and close similarities between liquids and holographic models, Phys. Rev.D 99 (2019) 106002 [arXiv:1808.05391] [INSPIRE].

  24. [24]

    S. Grozdanov and N. Poovuttikul, Generalized global symmetries in states with dynamical defects: the case of the transverse sound in field theory and holography, Phys. Rev.D 97 (2018) 106005 [arXiv:1801.03199] [INSPIRE].

  25. [25]

    A. Principi, G. Vignale, M. Carrega and M. Polini, Impact of disorder on Dirac plasmon losses, Phys. Rev.B 88 (2013) 121405.

  26. [26]

    G. Viola, T. Wenger, J. Kinaret and M. Fogelström, Graphene plasmons: impurities and nonlocal effects, Phys. Rev.B 97 (2018) 085429.

  27. [27]

    A. Mlayah et al., Raman study of longitudinal optical phonon-plasmon coupling and disorder effects in heavily Be-doped GaAs, J. Appl. Phys.69 (1991) 4064.

    ADS  Google Scholar 

  28. [28]

    C.A. Thibodeaux et al., Impurity-induced plasmon damping in individual cobalt-doped hollow Au nanoshells, J. Phys. Chem.B 118 (2014) 14056.

  29. [29]

    M. Baggioli and O. Pujolàs, Electron-phonon interactions, metal-insulator transitions and holographic massive gravity, Phys. Rev. Lett.114 (2015) 251602 [arXiv:1411.1003] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    L. Alberte, M. Baggioli, A. Khmelnitsky and O. Pujolàs, Solid holography and massive gravity, JHEP02 (2016) 114 [arXiv:1510.09089] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  31. [31]

    M. Baggioli and M. Goykhman, Phases of holographic superconductors with broken translational symmetry, JHEP07 (2015) 035 [arXiv:1504.05561] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  32. [32]

    M. Baggioli and D.K. Brattan, Drag phenomena from holographic massive gravity, Class. Quant. Grav.34 (2017) 015008 [arXiv:1504.07635] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  33. [33]

    M. Baggioli and M. Goykhman, Under the dome: doped holographic superconductors with broken translational symmetry, JHEP01 (2016) 011 [arXiv:1510.06363] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    M. Baggioli and O. Pujolàs, On holographic disorder-driven metal-insulator transitions, JHEP01 (2017) 040 [arXiv:1601.07897] [INSPIRE].

    ADS  MATH  Google Scholar 

  35. [35]

    L. Alberte, M. Baggioli and O. Pujolàs, Viscosity bound violation in holographic solids and the viscoelastic response, JHEP07 (2016) 074 [arXiv:1601.03384] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  36. [36]

    A. Karch, D.T. Son and A.O. Starinets, Holographic Quantum Liquid, Phys. Rev. Lett.102 (2009) 051602 [INSPIRE].

  37. [37]

    M. Kulaxizi and A. Parnachev, Comments on Fermi liquid from holography, Phys. Rev.D 78 (2008) 086004 [arXiv:0808.3953] [INSPIRE].

  38. [38]

    M. Edalati, J.I. Jottar and R.G. Leigh, Holography and the sound of criticality, JHEP10 (2010) 058 [arXiv:1005.4075] [INSPIRE].

    ADS  MATH  Google Scholar 

  39. [39]

    A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP09 (2007) 024 [arXiv:0705.3870] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  40. [40]

    C. Hoyos-Badajoz, A. O’Bannon and J.M.S. Wu, Zero sound in strange metallic holography, JHEP09 (2010) 086 [arXiv:1007.0590] [INSPIRE].

    ADS  MATH  Google Scholar 

  41. [41]

    A. Romero-Bermúdez, Density response of holographic metallic IR fixed points with translational pseudo-spontaneous symmetry breaking, JHEP07 (2019) 153 [arXiv:1904.06237] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  42. [42]

    L. Alberte et al., Black hole elasticity and gapped transverse phonons in holography, JHEP01 (2018) 129 [arXiv:1708.08477] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  43. [43]

    L. Alberte et al., Holographic phonons, Phys. Rev. Lett.120 (2018) 171602 [arXiv:1711.03100] [INSPIRE].

  44. [44]

    M. Ammon, M. Baggioli and A. Jiménez-Alba, A unified description of translational symmetry breaking in holography, arXiv:1904.05785 [INSPIRE].

  45. [45]

    T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP05 (2014) 101 [arXiv:1311.5157] [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    U. Gran, M. Tornsö and T. Zingg, Plasmons in holographic graphene, arXiv:1804.02284 [INSPIRE].

  47. [47]

    E. Mauri and H.T.C. Stoof, Screening of Coulomb interactions in holography, JHEP04 (2019) 035 [arXiv:1811.11795] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  48. [48]

    U. Gran, M. Tornsö and T. Zingg, Exotic holographic dispersion, JHEP02 (2019) 032 [arXiv:1808.05867] [INSPIRE].

    ADS  MATH  Google Scholar 

  49. [49]

    U. Gran, M. Tornsö and T. Zingg, Holographic response of electron clouds, JHEP03 (2019) 019 [arXiv:1810.11416] [INSPIRE].

    ADS  MATH  Google Scholar 

  50. [50]

    E. Witten, SL(2, ℤ) action on three-dimensional conformal field theories with Abelian symmetry, in From fields to strings, M. Shifman et al. eds., World Scientifc, Singapore (2003), hep-th/0307041 [INSPIRE].

  51. [51]

    E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].

  52. [52]

    W. Mueck, An Improved correspondence formula for AdS/CFT with multitrace operators, Phys. Lett.B 531 (2002) 301 [hep-th/0201100] [INSPIRE].

  53. [53]

    J. Zaanen, Y.-W. Sun, Y. Liu and K. Schalm, Holographic duality in condensed matter physics, Cambridge University Press, Cambridge U.K. (2015).

  54. [54]

    P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev.D 72 (2005) 086009 [hep-th/0506184] [INSPIRE].

  55. [55]

    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP09 (2002) 043 [hep-th/0205052] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  56. [56]

    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. 2. Sound waves, JHEP12 (2002) 054 [hep-th/0210220] [INSPIRE].

  57. [57]

    P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys.A 45 (2012) 473001 [arXiv:1205.5040] [INSPIRE].

  58. [58]

    R.E. Arias and I.S. Landea, Hydrodynamic modes of a holographic pwave superfluid, JHEP11 (2014) 047 [arXiv:1409.6357] [INSPIRE].

  59. [59]

    M. Kaminski et al., Holographic operator mixing and quasinormal modes on the brane, JHEP02 (2010) 021 [arXiv:0911.3610] [INSPIRE].

    ADS  MATH  Google Scholar 

  60. [60]

    T. Andrade, M. Baggioli, A. Krikun and N. Poovuttikul, Pinning of longitudinal phonons in holographic spontaneous helices, JHEP02 (2018) 085 [arXiv:1708.08306] [INSPIRE].

    ADS  MATH  Google Scholar 

  61. [61]

    D. Marolf and S.F. Ross, Boundary conditions and new dualities: vector fields in AdS/CFT, JHEP11 (2006) 085 [hep-th/0606113] [INSPIRE].

    ADS  Google Scholar 

  62. [62]

    S. Grozdanov, D.M. Hofman and N. Iqbal, Generalized global symmetries and dissipative magnetohydrodynamics, Phys. Rev.D 95 (2017) 096003 [arXiv:1610.07392] [INSPIRE].

  63. [63]

    D.M. Hofman and N. Iqbal, Generalized global symmetries and holography, SciPost Phys.4 (2018) 005 [arXiv:1707.08577] [INSPIRE].

    ADS  Google Scholar 

  64. [64]

    M. Edalati, J.I. Jottar and R.G. Leigh, Transport coefficients at zero temperature from extremal black holes, JHEP01 (2010) 018 [arXiv:0910.0645] [INSPIRE].

    ADS  MATH  Google Scholar 

  65. [65]

    M. Edalati, J.I. Jottar and R.G. Leigh, Shear modes, criticality and extremal black holes, JHEP04 (2010) 075 [arXiv:1001.0779] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  66. [66]

    Y. Matsuo et al., Sound modes in holographic hydrodynamics for charged AdS black hole, Nucl. Phys.B 820 (2009) 593 [arXiv:0901.0610] [INSPIRE].

  67. [67]

    D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].

  68. [68]

    R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev.D 88 (2013) 086003 [arXiv:1306.5792] [INSPIRE].

  69. [69]

    M. Baggioli, Gravity, holography and applications to condensed matter, Ph.D. thesis, Barcelona University, Barcelona, Spain (2016), arXiv:1610.02681 [INSPIRE].

  70. [70]

    S.L. Dubovsky, Phases of massive gravity, JHEP10 (2004) 076 [hep-th/0409124] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  71. [71]

    R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, JHEP01 (2015) 039 [arXiv:1411.1062] [INSPIRE].

    ADS  Google Scholar 

  72. [72]

    H. Leutwyler, Phonons as goldstone bosons, Helv. Phys. Acta70 (1997) 275 [hep-ph/9609466] [INSPIRE].

  73. [73]

    L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics. Volume 7: theory of elasticity, Pergamon Press, U.K. (1970).

  74. [74]

    P.C. Martin, O. Parodi and P.S. Pershan, Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids, Phys. Rev.A 6 (1972) 2401.

  75. [75]

    A. Zippelius, B.I. Halperin and D.R. Nelson, Dynamics of two-dimensional melting, Phys. Rev.B 22 (1980) 2514.

    ADS  Google Scholar 

  76. [76]

    M. Ammon, M. Baggioli, S. Gray and S. Grieninger, Longitudinal sound and diffusion in holographic massive gravity, arXiv:1905.09164 [INSPIRE].

  77. [77]

    M. Baggioli, V.C. Castillo and O. Pujolas, to appear.

  78. [78]

    M. Baggioli and S. Grieninger, Zoology of solid & fluid holography: Goldstone modes and phase relaxation, arXiv:1905.09488 [INSPIRE].

  79. [79]

    L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll and A. Karlsson, Theory of hydrodynamic transport in fluctuating electronic charge density wave states, Phys. Rev.B 96 (2017) 195128 [arXiv:1702.05104] [INSPIRE].

  80. [80]

    M. Kulaxizi and A. Parnachev, Holographic responses of fermion matter, Nucl. Phys.B 815 (2009) 125 [arXiv:0811.2262] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  81. [81]

    R.A. Davison and A.O. Starinets, Holographic zero sound at finite temperature, Phys. Rev.D 85 (2012) 026004 [arXiv:1109.6343] [INSPIRE].

  82. [82]

    R.A. Davison and N.K. Kaplis, Bosonic excitations of the AdS 4Reissner-Nordstrom black hole, JHEP12 (2011) 037 [arXiv:1111.0660] [INSPIRE].

  83. [83]

    M. Baggioli and A. Buchel, Holographic viscoelastic hydrodynamics, JHEP03 (2019) 146 [arXiv:1805.06756] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  84. [84]

    T. Andrade, M. Baggioli and O. Pujolàs, Viscoelastic dynamics in holography, arXiv:1903.02859 [INSPIRE].

  85. [85]

    P.M. Chaikin and T.C. Lubensky, Principles of condensed matter physics, Cambridge University Press, Cambridge U.K. (1995).

  86. [86]

    A. Amoretti, D. Areán, B. Goutéraux and D. Musso, A holographic strange metal with slowly fluctuating translational order, arXiv:1812.08118 [INSPIRE].

  87. [87]

    E. Wigner, On the interaction of electrons in metals, Phys. Rev.46 (1934) 1002.

    ADS  MATH  Google Scholar 

  88. [88]

    D.H.E. Dubin and T.M. O’Neil, Trapped nonneutral plasmas, liquids and crystals (the thermal equilibrium states), Rev. Mod. Phys.71 (1999) 87 [INSPIRE].

    ADS  Google Scholar 

  89. [89]

    A. Sumi and Y. Toyozawa, Discontinuity in the polaron ground state, J. Phys. Soc. Jpn.35 (1973) 137.

    ADS  Google Scholar 

  90. [90]

    R. Fantoni, Localization of acoustic polarons at low temperatures: a path-integral monte carlo approach, Phys. Rev.B 86 (2012) 144304.

  91. [91]

    F. Aprile and T. Ishii, A simple holographic model of a charged lattice, JHEP10 (2014) 151 [arXiv:1406.7193] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  92. [92]

    M. Baggioli and A. Zaccone, Universal origin of boson peak vibrational anomalies in ordered crystals and in amorphous materials, Phys. Rev. Lett.122 (2019) 145501 [arXiv:1810.09516] [INSPIRE].

    ADS  Google Scholar 

  93. [93]

    P.O. Sukhachov, V.A. Miransky, I.A. Shovkovy and E.V. Gorbar, Collective excitations in Weyl semimetals in the hydrodynamic regime, J. Phys. Condens. Matter30 (2018) 275601 [arXiv:1802.10110] [INSPIRE].

    Google Scholar 

  94. [94]

    K. Sadhukhan, A. Politano and A. Agarwal, A novel undamped gapless plasmon mode in tilted type-II Dirac semimetal, arXiv:1904.10137.

  95. [95]

    V. Nosenko, J. Goree and A. Piel, Cutoff wave number for shear waves in a two-dimensional yukawa system (dusty plasma), Phys. Rev. Lett.97 (2006) 115001.

    ADS  Google Scholar 

  96. [96]

    S.A. Khrapak, A.G. Khrapak, N.P. Kryuchkov and S.O. Yurchenko, Onset of transverse (shear) waves in strongly-coupled yukawa fluids, J. Chem. Phys.150 (2019) 104503.

    ADS  Google Scholar 

  97. [97]

    J. M. Mart ın-García, xAct: efficient tensor computer algebra for the Wolfram language, https://www.xact.es (2019).

  98. [98]

    T. Nutma, xTras: a field-theory inspired xAct package for mathematica, Comput. Phys. Commun.185 (2014) 1719 [arXiv:1308.3493] [INSPIRE].

    ADS  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tobias Zingg.

Additional information

ArXiv ePrint: 1905.00804

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baggioli, M., Gran, U., Alba, A.J. et al. Holographic plasmon relaxation with and without broken translations. J. High Energ. Phys. 2019, 13 (2019). https://doi.org/10.1007/JHEP09(2019)013

Download citation

Keywords

  • Holography and condensed matter physics (AdS/CMT)
  • Gauge-gravity correspondence