Advertisement

Journal of High Energy Physics

, 2018:142 | Cite as

Alignment limit in 2HDM: robustness put to test

  • Siddhartha KarmakarEmail author
  • Subhendu Rakshit
Open Access
Regular Article - Theoretical Physics

Abstract

In a two-Higgs-doublet model (2HDM), at the vicinity of the alignment limit, the extra contributions to the couplings of the SM-like Higgs with other particles can be subdominant to the same coming from the six dimensional operators. In this context, we revisit the alignment limit itself. It is investigated to what extent these operators can mask the actual alignment in a 2HDM. The bosonic operators which rescale the Higgs kinetic terms can lead to substantial change in the parameter space of the model. We find that some other bosonic operators, which are severely constrained from the electroweak precision tests, can also modify the parameter space of 2HDM due to their anomalous momentum structures. A particular kind of Little Higgs model is explored as an example of 2HDM effective field theory in connection with 2HDM alignment. Choosing a suitable benchmark point in a Type-II 2HDM, we highlight the possibility that the exact alignment limit is ruled out at 95% CL in presence of such operators.

Keywords

Phenomenology of Field Theories in Higher Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: The Approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
  4. [4]
    M. Carena, I. Low, N.R. Shah and C.E.M. Wagner, Impersonating the Standard Model Higgs Boson: Alignment without Decoupling, JHEP 04 (2014) 015 [arXiv:1310.2248] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Bernon, J.F. Gunion, H.E. Haber, Y. Jiang and S. Kraml, Scrutinizing the alignment limit in two-Higgs-doublet models: m h = 125 GeV, Phys. Rev. D 92 (2015) 075004 [arXiv:1507.00933] [INSPIRE].
  6. [6]
    J. Bernon, J.F. Gunion, H.E. Haber, Y. Jiang and S. Kraml, Scrutinizing the alignment limit in two-Higgs-doublet models. II. m H = 125 GeV, Phys. Rev. D 93 (2016) 035027 [arXiv:1511.03682] [INSPIRE].
  7. [7]
    A. Delgado, G. Nardini and M. Quirós, A Light Supersymmetric Higgs Sector Hidden by a Standard Model-like Higgs, JHEP 07 (2013) 054 [arXiv:1303.0800] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    N. Craig, J. Galloway and S. Thomas, Searching for Signs of the Second Higgs Doublet, arXiv:1305.2424 [INSPIRE].
  9. [9]
    M. Carena, H.E. Haber, I. Low, N.R. Shah and C.E.M. Wagner, Complementarity between Nonstandard Higgs Boson Searches and Precision Higgs Boson Measurements in the MSSM, Phys. Rev. D 91 (2015) 035003 [arXiv:1410.4969] [INSPIRE].
  10. [10]
    J. Bernon, J.F. Gunion, Y. Jiang and S. Kraml, Light Higgs bosons in Two-Higgs-Doublet Models, Phys. Rev. D 91 (2015) 075019 [arXiv:1412.3385] [INSPIRE].
  11. [11]
    D.M. Asner et al., ILC Higgs White Paper, in Proceedings of 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis U.S.A. (2013) [arXiv:1310.0763] [INSPIRE].
  12. [12]
    H.E. Haber, The Higgs data and the Decoupling Limit, in Proceedings of 1st Toyama International Workshop on Higgs as a Probe of New Physics 2013 (HPNP2013), Toyama Japan (2013) [arXiv:1401.0152] [INSPIRE].
  13. [13]
    S. Karmakar and S. Rakshit, Higher dimensional operators in 2HDM, JHEP 10 (2017) 048 [arXiv:1707.00716] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Crivellin, M. Ghezzi and M. Procura, Effective Field Theory with Two Higgs Doublets, JHEP 09 (2016) 160 [arXiv:1608.00975] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  16. [16]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J.M. Cline, K. Kainulainen and M. Trott, Electroweak Baryogenesis in Two Higgs Doublet Models and B meson anomalies, JHEP 11 (2011) 089 [arXiv:1107.3559] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    G.C. Dorsch, S.J. Huber and J.M. No, A strong electroweak phase transition in the 2HDM after LHC8, JHEP 10 (2013) 029 [arXiv:1305.6610] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Crivellin, C. Greub and A. Kokulu, Explaining BDτ ν, BD τ ν and Bτ ν in a 2HDM of type-III, Phys. Rev. D 86 (2012) 054014 [arXiv:1206.2634] [INSPIRE].
  20. [20]
    A. Crivellin, J. Heeck and P. Stoffer, A perturbed lepton-specific two-Higgs-doublet model facing experimental hints for physics beyond the Standard Model, Phys. Rev. Lett. 116 (2016) 081801 [arXiv:1507.07567] [INSPIRE].
  21. [21]
    A. Djouadi, L. Maiani, A. Polosa, J. Quevillon and V. Riquer, Fully covering the MSSM Higgs sector at the LHC, JHEP 06 (2015) 168 [arXiv:1502.05653] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    N.D. Christensen, T. Han, Z. Liu and S. Su, Low-Mass Higgs Bosons in the NMSSM and Their LHC Implications, JHEP 08 (2013) 019 [arXiv:1303.2113] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C.-Y. Chen, M. Freid and M. Sher, Next-to-minimal two Higgs doublet model, Phys. Rev. D 89 (2014) 075009 [arXiv:1312.3949] [INSPIRE].
  24. [24]
    J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra and A. Wulzer, The Other Natural Two Higgs Doublet Model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Gopalakrishna, T.S. Mukherjee and S. Sadhukhan, Status and Prospects of the Two-Higgs-Doublet SU(6)/Sp(6) little-Higgs Model and the Alignment Limit, Phys. Rev. D 94 (2016) 015034 [arXiv:1512.05731] [INSPIRE].
  26. [26]
    T. Brown, C. Frugiuele and T. Gregoire, UV friendly T-parity in the SU(6)/Sp(6) little Higgs model, JHEP 06 (2011) 108 [arXiv:1012.2060] [INSPIRE].
  27. [27]
    M. Schmaltz, D. Stolarski and J. Thaler, The Bestest Little Higgs, JHEP 09 (2010) 018 [arXiv:1006.1356] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    N. Fonseca, R. Zukanovich Funchal, A. Lessa and L. Lopez-Honorez, Dark Matter Constraints on Composite Higgs Models, JHEP 06 (2015) 154 [arXiv:1501.05957] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Carmona and M. Chala, Composite Dark Sectors, JHEP 06 (2015) 105 [arXiv:1504.00332] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    J.L. Diaz-Cruz, J. Hernandez-Sanchez and J.J. Toscano, An Effective Lagrangian description of charged Higgs decays H +W + γ, W + Z and W + h0, Phys. Lett. B 512 (2001) 339 [hep-ph/0106001] [INSPIRE].
  31. [31]
    S.L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral Currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Models of Yukawa interaction in the two Higgs doublet model and their collider phenomenology, Phys. Rev. D 80 (2009) 015017 [arXiv:0902.4665] [INSPIRE].
  34. [34]
    P.S. Bhupal Dev and A. Pilaftsis, Maximally Symmetric Two Higgs Doublet Model with Natural Standard Model Alignment, JHEP 12 (2014) 024 [Erratum ibid. 1511 (2015) 147] [arXiv:1408.3405] [INSPIRE].
  35. [35]
    S. Pramanick and A. Raychaudhuri, Three-Higgs-doublet model under A4 symmetry implies alignment, JHEP 01 (2018) 011 [arXiv:1710.04433] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    K. Benakli, M.D. Goodsell and S.L. Williamson, Higgs alignment from extended supersymmetry, Eur. Phys. J. C 78 (2018) 658 [arXiv:1801.08849] [INSPIRE].
  37. [37]
    A. Pomarol and F. Riva, Towards the Ultimate SM Fit to Close in on Higgs Physics, JHEP 01 (2014) 151 [arXiv:1308.2803] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    LEP, ALEPH, DELPHI, L3, OPAL and LEP TGC Working Group collaborations, A Combination of Preliminary Results on Gauge Boson Couplings Measured by the LEP experiments, LEPEWWG/TGC/2003-01 (2003).
  40. [40]
    H.E. Haber and O. Stål, New LHC benchmarks for the \( \mathcal{C}\mathcal{P} \) -conserving two-Higgs-doublet model, Eur. Phys. J. C 75 (2015) 491 [Erratum ibid. C 76 (2016) 312] [arXiv:1507.04281] [INSPIRE].
  41. [41]
    I.F. Ginzburg and M. Krawczyk, Symmetries of two Higgs doublet model and CP-violation, Phys. Rev. D 72 (2005) 115013 [hep-ph/0408011] [INSPIRE].
  42. [42]
    G.C. Dorsch, S.J. Huber, K. Mimasu and J.M. No, Hierarchical versus degenerate 2HDM: The LHC run 1 legacy at the onset of run 2, Phys. Rev. D 93 (2016) 115033 [arXiv:1601.04545] [INSPIRE].
  43. [43]
    LEP, DELPHI, OPAL, ALEPH and L3 collaborations, G. Abbiendi et al., Search for Charged Higgs bosons: Combined Results Using LEP Data, Eur. Phys. J. C 73 (2013) 2463 [arXiv:1301.6065] [INSPIRE].
  44. [44]
    DELPHI, OPAL, ALEPH, LEP Working Group for Higgs Boson Searches and L3 collaborations, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [INSPIRE].
  45. [45]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunter’s Guide, Front. Phys. 80 (2000) 1 [INSPIRE].Google Scholar
  46. [46]
    O. Eberhardt, U. Nierste and M. Wiebusch, Status of the two-Higgs-doublet model of type-II, JHEP 07 (2013) 118 [arXiv:1305.1649] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    O. Deschamps, S. Descotes-Genon, S. Monteil, V. Niess, S. T’Jampens and V. Tisserand, The Two Higgs Doublet of Type II facing flavour physics data, Phys. Rev. D 82 (2010) 073012 [arXiv:0907.5135] [INSPIRE].
  48. [48]
    F. Mahmoudi and O. Stål, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [INSPIRE].
  49. [49]
    G. Bhattacharyya and D. Das, Scalar sector of two-Higgs-doublet models: A minireview, Pramana 87 (2016) 40 [arXiv:1507.06424] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J. Maalampi, J. Sirkka and I. Vilja, Tree level unitarity and triviality bounds for two Higgs models, Phys. Lett. B 265 (1991) 371 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J. Horejsi and M. Kladiva, Tree-unitarity bounds for THDM Higgs masses revisited, Eur. Phys. J. C 46 (2006) 81 [hep-ph/0510154] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    D. Eriksson, J. Rathsman and O. Stål, 2HDMC: Two-Higgs-Doublet Model Calculator Physics and Manual, Comput. Phys. Commun. 181 (2010) 189 [arXiv:0902.0851] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    Y. Kikuta and Y. Yamamoto, Perturbative unitarity of Higgs derivative interactions, PTEP 2013 (2013) 053B05 [arXiv:1210.5674] [INSPIRE].
  54. [54]
    Y. Kikuta, Y. Okada and Y. Yamamoto, Structure of dimension-six derivative interactions in pseudo Nambu-Goldstone N Higgs doublet models, Phys. Rev. D 85 (2012) 075021 [arXiv:1111.2120] [INSPIRE].
  55. [55]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  56. [56]
    ATLAS collaboration, Measurements of Higgs boson properties in the diphoton decay channel with 36.1 fb −1 pp collision data at the center-of-mass energy of 13 TeV with the ATLAS detector, ATLAS-CONF-2017-045 (2017).
  57. [57]
    ATLAS collaboration, Combined measurements of Higgs boson production and decay in the HZZ →4ℓ and Hγγ channels using \( \sqrt{s}=13 \) TeV pp collision data collected with the ATLAS experiment, ATLAS-CONF-2017-047 (2017).
  58. [58]
    ATLAS collaboration, Measurement of the Higgs boson coupling properties in the HZZ →4ℓ decay channel at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 03 (2018) 095 [arXiv:1712.02304] [INSPIRE].
  59. [59]
    ATLAS collaboration, Measurements of the Higgs boson production cross section via Vector Boson Fusion and associated W H production in the W W ℓνℓν decay mode with the ATLAS detector at \( \sqrt{s}=13 \) TeV, ATLAS-CONF-2016-112 (2016).
  60. [60]
    ATLAS collaboration, Evidence for the Hbb decay with the ATLAS detector, JHEP 12 (2017) 024 [arXiv:1708.03299] [INSPIRE].
  61. [61]
    CMS collaboration, Measurements of properties of the Higgs boson in the diphoton decay channel with the full 2016 data set, CMS-PAS-HIG-16-040 (2017).
  62. [62]
    CMS collaboration, Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at \( \sqrt{s}=13 \) TeV, JHEP 11 (2017) 047 [arXiv:1706.09936] [INSPIRE].
  63. [63]
    CMS collaboration, Higgs to WW measurements with 15.2 fb−1 of 13 TeV proton-proton collisions, CMS-PAS-HIG-16-021 (2017).
  64. [64]
    CMS collaboration, Observation of the Higgs boson decay to a pair of τ leptons with the CMS detector, Phys. Lett. B 779 (2018) 283 [arXiv:1708.00373] [INSPIRE].
  65. [65]
    CMS collaboration, Search for the standard model Higgs boson produced through vector boson fusion and decaying to bb with proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-16-003 (2016).
  66. [66]
    ATLAS collaboration, Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 01 (2018) 055 [arXiv:1709.07242] [INSPIRE].
  67. [67]
    ATLAS collaboration, Search for new phenomena in high-mass diphoton final states using 37 fb −1 of proton-proton collisions collected at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 775 (2017) 105 [arXiv:1707.04147] [INSPIRE].
  68. [68]
    ATLAS collaboration, Search for pair production of Higgs bosons in the \( b\overline{b}b\overline{b} \) final state using protonproton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-049 (2016).
  69. [69]
    ATLAS collaboration, Search for heavy resonances decaying into W W in the eνμν final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 24 [arXiv:1710.01123] [INSPIRE].
  70. [70]
    ATLAS collaboration, Search for heavy ZZ resonances in the ℓ + + and \( {\ell}^{+}{\ell}^{-}\nu \overline{\nu} \) final states using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 293 [arXiv:1712.06386] [INSPIRE].
  71. [71]
    ATLAS collaboration, Search for a CP-odd Higgs boson decaying to Zh in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-015 (2016).
  72. [72]
    L. Wang, F. Zhang and X.-F. Han, Two-Higgs-doublet model of type-II confronted with the LHC run-I and run-II data, Phys. Rev. D 95 (2017) 115014 [arXiv:1701.02678] [INSPIRE].
  73. [73]
    B. Coleppa, F. Kling and S. Su, Constraining Type II 2HDM in Light of LHC Higgs Searches, JHEP 01 (2014) 161 [arXiv:1305.0002] [INSPIRE].ADSGoogle Scholar
  74. [74]
    N. Craig, F. D’Eramo, P. Draper, S. Thomas and H. Zhang, The Hunt for the Rest of the Higgs Bosons, JHEP 06 (2015) 137 [arXiv:1504.04630] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    S. Chang, S.K. Kang, J.-P. Lee, K.Y. Lee, S.C. Park and J. Song, Two Higgs doublet models for the LHC Higgs boson data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 09 (2014) 101 [arXiv:1310.3374] [INSPIRE].
  76. [76]
    C.-Y. Chen, S. Dawson and M. Sher, Heavy Higgs Searches and Constraints on Two Higgs Doublet Models, Phys. Rev. D 88 (2013) 015018 [Erratum ibid. D 88 (2013) 039901] [arXiv:1305.1624] [INSPIRE].
  77. [77]
    P.M. Ferreira, S. Liebler and J. Wittbrodt, ppAZh and the wrong-sign limit of the two-Higgs-doublet model, Phys. Rev. D 97 (2018) 055008 [arXiv:1711.00024] [INSPIRE].
  78. [78]
    D. Chowdhury and O. Eberhardt, Global fits of the two-loop renormalized Two-Higgs-Doublet model with soft Z 2 breaking, JHEP 11 (2015) 052 [arXiv:1503.08216] [INSPIRE].
  79. [79]
    D. Chowdhury and O. Eberhardt, Update of Global Two-Higgs-Doublet Model Fits, JHEP 05 (2018) 161 [arXiv:1711.02095] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    R. Harlander, M. Mühlleitner, J. Rathsman, M. Spira and O. Stål, Interim recommendations for the evaluation of Higgs production cross sections and branching ratios at the LHC in the Two-Higgs-Doublet Model, arXiv:1312.5571 [INSPIRE].
  82. [82]
    L. Altenkamp, S. Dittmaier and H. Rzehak, Renormalization schemes for the Two-Higgs-Doublet Model and applications to hW W/ZZ → 4 fermions, JHEP 09 (2017) 134 [arXiv:1704.02645] [INSPIRE].
  83. [83]
    R. Contino, M. Ghezzi, C. Grojean, M. Mühlleitner and M. Spira, eHDECAY: an Implementation of the Higgs Effective Lagrangian into HDECAY, Comput. Phys. Commun. 185 (2014) 3412 [arXiv:1403.3381] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    R. Contino, M. Ghezzi, C. Grojean, M. Mühlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  85. [85]
    D. Dercks, G. Moortgat-Pick, J. Reuter and S.Y. Shim, The fate of the Littlest Higgs Model with T-parity under 13 TeV LHC Data, JHEP 05 (2018) 049 [arXiv:1801.06499] [INSPIRE].
  86. [86]
    S. De Curtis, S. Moretti, K. Yagyu and E. Yildirim, LHC Phenomenology of Composite 2-Higgs Doublet Models, Eur. Phys. J. C 77 (2017) 513 [arXiv:1610.02687] [INSPIRE].
  87. [87]
    S. De Curtis, S. Moretti, K. Yagyu and E. Yildirim, Single and double SM-like Higgs boson production at future electron-positron colliders in composite 2HDMs, Phys. Rev. D 95 (2017) 095026 [arXiv:1702.07260] [INSPIRE].
  88. [88]
    S. De Curtis, S. Moretti, K. Yagyu and E. Yildirim, Perturbative unitarity bounds in composite two-Higgs doublet models, Phys. Rev. D 94 (2016) 055017 [arXiv:1602.06437] [INSPIRE].
  89. [89]
    A. Banerjee, G. Bhattacharyya, N. Kumar and T.S. Ray, Constraining Composite Higgs Models using LHC data, JHEP 03 (2018) 062 [arXiv:1712.07494] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Discipline of Physics, Indian Institute of Technology IndoreIndoreIndia

Personalised recommendations