Advertisement

Journal of High Energy Physics

, 2018:80 | Cite as

Unraveling conformal gravity amplitudes

  • Henrik Johansson
  • Gustav Mogull
  • Fei Teng
Open Access
Regular Article - Theoretical Physics
  • 28 Downloads

Abstract

Conformal supergravity amplitudes are obtained from the double-copy construction using gauge-theory amplitudes, and compared to direct calculations starting from conformal supergravity Lagrangians. We consider several different theories: minimal \( \mathcal{N}=4 \) conformal supergravity, non-minimal \( \mathcal{N}=4 \) Berkovits-Witten conformal supergravity, mass-deformed versions of these theories, as well as supersymmetry truncations thereof. Coupling the theories to a Yang-Mills sector is also considered. For all cases we give the gravity Lagrangians that the double copy implicitly generates. The two main results are: we determine a Lagrangian for the non-minimal Berkovits-Witten theory, and we uncover the double-copy prescription for the minimal \( \mathcal{N}=4 \) conformal supergravity.

Keywords

Scattering Amplitudes Conformal Field Theory Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    K.S. Stelle, Renormalization of higher derivative quantum gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    H. Weyl, Raum, Zeit, Materie (in German), 5 ed., Springer, Berlin, Heidelberg, Germany, (1923).Google Scholar
  3. [3]
    M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Gauge theory of the conformal and superconformal group, Phys. Lett. B 69 (1977) 304 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    S. Ferrara, M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Gauging the graded conformal group with unitary internal symmetries, Nucl. Phys. B 129 (1977) 125 [INSPIRE].
  5. [5]
    M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Properties of conformal supergravity, Phys. Rev. D 17 (1978) 3179 [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    E. Bergshoeff, M. de Roo and B. de Wit, Extended conformal supergravity, Nucl. Phys. B 182 (1981) 173 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B 91 (1980) 99 [Adv. Ser. Astrophys. Cosmol. 3 (1987) 130] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T.D. Lee and G.C. Wick, Negative metric and the unitarity of the S matrix, Nucl. Phys. B 9 (1969) 209 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    T.D. Lee and G.C. Wick, Finite theory of quantum electrodynamics, Phys. Rev. D 2 (1970) 1033 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    B. Grinstein, D. O’Connell and M.B. Wise, The Lee-Wick standard model, Phys. Rev. D 77 (2008) 025012 [arXiv:0704.1845] [INSPIRE].
  11. [11]
    H. Johansson and J. Nohle, Conformal gravity from gauge theory, arXiv:1707.02965 [INSPIRE].
  12. [12]
    N. Berkovits and E. Witten, Conformal supergravity in twistor-string theory, JHEP 08 (2004) 009 [hep-th/0406051] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
  14. [14]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].
  15. [15]
    H. Johansson and A. Ochirov, Pure gravities via color-kinematics duality for fundamental matter, JHEP 11 (2015) 046 [arXiv:1407.4772] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    H. Johansson and A. Ochirov, Color-kinematics duality for QCD amplitudes, JHEP 01 (2016) 170 [arXiv:1507.00332] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    T. Bargheer, S. He and T. McLoughlin, New relations for three-dimensional supersymmetric scattering amplitudes, Phys. Rev. Lett. 108 (2012) 231601 [arXiv:1203.0562] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Scattering amplitudes in N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity, JHEP 01 (2015) 081 [arXiv:1408.0764] [INSPIRE].
  19. [19]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Spontaneously broken Yang-Mills-Einstein supergravities as double copies, JHEP 06 (2017) 064 [arXiv:1511.01740] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy, JHEP 07 (2017) 002 [arXiv:1703.00421] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    Z. Bern, C. Boucher-Veronneau and H. Johansson, N ≥ 4 supergravity amplitudes from gauge theory at one loop, Phys. Rev. D 84 (2011) 105035 [arXiv:1107.1935] [INSPIRE].
  22. [22]
    Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Simplifying multiloop integrands and ultraviolet divergences of gauge theory and gravity amplitudes, Phys. Rev. D 85 (2012) 105014 [arXiv:1201.5366] [INSPIRE].
  23. [23]
    J.J.M. Carrasco, M. Chiodaroli, M. Günaydin and R. Roiban, One-loop four-point amplitudes in pure and matter-coupled N ≤ 4 supergravity, JHEP 03 (2013) 056 [arXiv:1212.1146] [INSPIRE].
  24. [24]
    J. Broedel and L.J. Dixon, Color-kinematics duality and double-copy construction for amplitudes from higher-dimension operators, JHEP 10 (2012) 091 [arXiv:1208.0876] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Y.-T. Huang and H. Johansson, Equivalent D = 3 supergravity amplitudes from double copies of three-algebra and two-algebra gauge theories, Phys. Rev. Lett. 110 (2013) 171601 [arXiv:1210.2255] [INSPIRE].
  26. [26]
    M. Chiodaroli, Q. Jin and R. Roiban, Color/kinematics duality for general Abelian orbifolds of N = 4 super Yang-Mills theory, JHEP 01 (2014) 152 [arXiv:1311.3600] [INSPIRE].
  27. [27]
    A. Anastasiou, L. Borsten, M.J. Duff, L.J. Hughes and S. Nagy, A magic pyramid of supergravities, JHEP 04 (2014) 178 [arXiv:1312.6523] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Complete construction of magical, symmetric and homogeneous N = 2 supergravities as double copies of gauge theories, Phys. Rev. Lett. 117 (2016) 011603 [arXiv:1512.09130] [INSPIRE].
  29. [29]
    A. Anastasiou et al., Twin supergravities from Yang-Mills theory squared, Phys. Rev. D 96 (2017) 026013 [arXiv:1610.07192] [INSPIRE].
  30. [30]
    A. Anastasiou, L. Borsten, M.J. Duff, A. Marrani, S. Nagy and M. Zoccali, Are all supergravity theories Yang-Mills squared?, Nucl. Phys. B 934 (2018) 606 [arXiv:1707.03234] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    H. Johansson, G. Kälin and G. Mogull, Two-loop supersymmetric QCD and half-maximal supergravity amplitudes, JHEP 09 (2017) 019 [arXiv:1706.09381] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Gauged supergravities and spontaneous supersymmetry breaking from the double copy construction, Phys. Rev. Lett. 120 (2018) 171601 [arXiv:1710.08796] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    T. Azevedo and O.T. Engelund, Ambitwistor formulations of R 2 gravity and (DF)2 gauge theories, JHEP 11 (2017) 052 [arXiv:1707.02192] [INSPIRE].
  34. [34]
    T. Azevedo, M. Chiodaroli, H. Johansson and O. Schlotterer, Heterotic and bosonic string amplitudes via field theory, arXiv:1803.05452 [INSPIRE].
  35. [35]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Explicit BCJ numerators from pure spinors, JHEP 07 (2011) 092 [arXiv:1104.5224] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    Y.-T. Huang, H. Johansson and S. Lee, On three-algebra and bi-fundamental matter amplitudes and integrability of supergravity, JHEP 11 (2013) 050 [arXiv:1307.2222] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    F. Cachazo, Fundamental BCJ relation in N = 4 SYM from the connected formulation, arXiv:1206.5970 [INSPIRE].
  38. [38]
    L. de la Cruz, A. Kniss and S. Weinzierl, Proof of the fundamental BCJ relations for QCD amplitudes, JHEP 09 (2015) 197 [arXiv:1508.01432] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    C.R. Mafra and O. Schlotterer, Berends-Giele recursions and the BCJ duality in superspace and components, JHEP 03 (2016) 097 [arXiv:1510.08846] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    N.E.J. Bjerrum-Bohr, J.L. Bourjaily, P.H. Damgaard and B. Feng, Manifesting color-kinematics duality in the scattering equation formalism, JHEP 09 (2016) 094 [arXiv:1608.00006] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    Y.-J. Du, F. Teng and Y.-S. Wu, Direct evaluation of n-point single-trace MHV amplitudes in 4d Einstein-Yang-Mills theory using the CHY formalism, JHEP 09 (2016) 171 [arXiv:1608.00883] [INSPIRE].
  42. [42]
    Y.-J. Du and F. Teng, BCJ numerators from reduced Pfaffian, JHEP 04 (2017) 033 [arXiv:1703.05717] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    Y.-J. Du, B. Feng and F. Teng, Expansion of all multitrace tree level EYM amplitudes, JHEP 12 (2017) 038 [arXiv:1708.04514] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    F. Teng and B. Feng, Expanding Einstein-Yang-Mills by Yang-Mills in CHY frame, JHEP 05 (2017) 075 [arXiv:1703.01269] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    J. Plefka and W. Wormsbecher, New relations for graviton-matter amplitudes, Phys. Rev. D 98 (2018) 026011 [arXiv:1804.09651] [INSPIRE].
  46. [46]
    G. Chen and T. Wang, BCJ numerators from differential operator of multidimensional residue, arXiv:1709.08503 [INSPIRE].
  47. [47]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Minimal basis for gauge theory amplitudes, Phys. Rev. Lett. 103 (2009) 161602 [arXiv:0907.1425] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    S. Stieberger, Open & closed vs. pure open string disk amplitudes, arXiv:0907.2211 [INSPIRE].
  49. [49]
    J.J. Carrasco and H. Johansson, Five-point amplitudes in N = 4 super-Yang-Mills theory and N = 8 supergravity, Phys. Rev. D 85 (2012) 025006 [arXiv:1106.4711] [INSPIRE].
  50. [50]
    N.E.J. Bjerrum-Bohr, T. Dennen, R. Monteiro and D. O’Connell, Integrand oxidation and one-loop colour-dual numerators in N = 4 gauge theory, JHEP 07 (2013) 092 [arXiv:1303.2913] [INSPIRE].
  51. [51]
    Z. Bern, S. Davies, T. Dennen, Y.-T. Huang and J. Nohle, Color-kinematics duality for pure Yang-Mills and gravity at one and two loops, Phys. Rev. D 92 (2015) 045041 [arXiv:1303.6605] [INSPIRE].
  52. [52]
    J. Nohle, Color-kinematics duality in one-loop four-gluon amplitudes with matter, Phys. Rev. D 90 (2014) 025020 [arXiv:1309.7416] [INSPIRE].
  53. [53]
    C.R. Mafra and O. Schlotterer, Two-loop five-point amplitudes of super Yang-Mills and supergravity in pure spinor superspace, JHEP 10 (2015) 124 [arXiv:1505.02746] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    S. He, R. Monteiro and O. Schlotterer, String-inspired BCJ numerators for one-loop MHV amplitudes, JHEP 01 (2016) 171 [arXiv:1507.06288] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    G. Mogull and D. O’Connell, Overcoming obstacles to colour-kinematics duality at two loops, JHEP 12 (2015) 135 [arXiv:1511.06652] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  56. [56]
    H. Kawai, D.C. Lewellen and S.-H. Henry Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys. B 546 (1999) 423 [hep-th/9811140] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, The momentum kernel of gauge and gravity theories, JHEP 01 (2011) 001 [arXiv:1010.3933] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    C. Boucher-Veronneau and L.J. Dixon, N ≥ 4 supergravity amplitudes from gauge theory at two loops, JHEP 12 (2011) 046 [arXiv:1110.1132] [INSPIRE].
  60. [60]
    R.H. Boels and R.S. Isermann, New relations for scattering amplitudes in Yang-Mills theory at loop level, Phys. Rev. D 85 (2012) 021701 [arXiv:1109.5888] [INSPIRE].
  61. [61]
    Z. Bern, J.J.M. Carrasco, H. Johansson and R. Roiban, The five-loop four-point amplitude of N = 4 super-Yang-Mills theory, Phys. Rev. Lett. 109 (2012) 241602 [arXiv:1207.6666] [INSPIRE].
  62. [62]
    R.H. Boels, R.S. Isermann, R. Monteiro and D. O’Connell, Colour-kinematics duality for one-loop rational amplitudes, JHEP 04 (2013) 107 [arXiv:1301.4165] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    A. Luna, S. Melville, S.G. Naculich and C.D. White, Next-to-soft corrections to high energy scattering in QCD and gravity, JHEP 01 (2017) 052 [arXiv:1611.02172] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    S. He and O. Schlotterer, New relations for gauge-theory and gravity amplitudes at loop level, Phys. Rev. Lett. 118 (2017) 161601 [arXiv:1612.00417] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    S. He, O. Schlotterer and Y. Zhang, New BCJ representations for one-loop amplitudes in gauge theories and gravity, Nucl. Phys. B 930 (2018) 328 [arXiv:1706.00640] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    D. Nandan, J. Plefka and G. Travaglini, All rational one-loop Einstein-Yang-Mills amplitudes at four points, arXiv:1803.08497 [INSPIRE].
  67. [67]
    Z. Bern, S. Davies, T. Dennen and Y.-T. Huang, Ultraviolet cancellations in half-maximal supergravity as a consequence of the double-copy structure, Phys. Rev. D 86 (2012) 105014 [arXiv:1209.2472] [INSPIRE].
  68. [68]
    Z. Bern, S. Davies, T. Dennen, A.V. Smirnov and V.A. Smirnov, Ultraviolet properties of N = 4 supergravity at four loops, Phys. Rev. Lett. 111 (2013) 231302 [arXiv:1309.2498] [INSPIRE].
  69. [69]
    Z. Bern, S. Davies and T. Dennen, The ultraviolet structure of half-maximal supergravity with matter multiplets at two and three loops, Phys. Rev. D 88 (2013) 065007 [arXiv:1305.4876] [INSPIRE].
  70. [70]
    Z. Bern, S. Davies and T. Dennen, The ultraviolet critical dimension of half-maximal supergravity at three loops, arXiv:1412.2441 [INSPIRE].
  71. [71]
    Z. Bern, J.J. Carrasco, W.-M. Chen, H. Johansson and R. Roiban, Gravity amplitudes as generalized double copies of gauge-theory amplitudes, Phys. Rev. Lett. 118 (2017) 181602 [arXiv:1701.02519] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    Z. Bern, J.J.M. Carrasco, W.-M. Chen, H. Johansson, R. Roiban and M. Zeng, Five-loop four-point integrand of N = 8 supergravity as a generalized double copy, Phys. Rev. D 96 (2017) 126012 [arXiv:1708.06807] [INSPIRE].
  73. [73]
    Z. Bern et al., Ultraviolet properties of N = 8 supergravity at five loops, arXiv:1804.09311 [INSPIRE].
  74. [74]
    R.H. Boels, B.A. Kniehl, O.V. Tarasov and G. Yang, Color-kinematic duality for form factors, JHEP 02 (2013) 063 [arXiv:1211.7028] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  75. [75]
    R. Boels, B.A. Kniehl and G. Yang, Master integrals for the four-loop Sudakov form factor, Nucl. Phys. B 902 (2016) 387 [arXiv:1508.03717] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    G. Yang, Color-kinematics duality and Sudakov form factor at five loops for N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 117 (2016) 271602 [arXiv:1610.02394] [INSPIRE].
  77. [77]
    R.H. Boels, T. Huber and G. Yang, Four-loop nonplanar cusp anomalous dimension in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 119 (2017) 201601 [arXiv:1705.03444] [INSPIRE].
  78. [78]
    R. Saotome and R. Akhoury, Relationship between gravity and gauge scattering in the high energy limit, JHEP 01 (2013) 123 [arXiv:1210.8111] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    R. Monteiro, D. O’Connell and C.D. White, Black holes and the double copy, JHEP 12 (2014) 056 [arXiv:1410.0239] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  80. [80]
    A. Luna, R. Monteiro, D. O’Connell and C.D. White, The classical double copy for Taub-NUT spacetime, Phys. Lett. B 750 (2015) 272 [arXiv:1507.01869] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    A.K. Ridgway and M.B. Wise, Static spherically symmetric Kerr-Schild metrics and implications for the classical double copy, Phys. Rev. D 94 (2016) 044023 [arXiv:1512.02243] [INSPIRE].
  82. [82]
    C.D. White, Exact solutions for the biadjoint scalar field, Phys. Lett. B 763 (2016) 365 [arXiv:1606.04724] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    A. Luna, R. Monteiro, I. Nicholson, D. O’Connell and C.D. White, The double copy: bremsstrahlung and accelerating black holes, JHEP 06 (2016) 023 [arXiv:1603.05737] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  84. [84]
    G. Cardoso, S. Nagy and S. Nampuri, Multi-centered N = 2 BPS black holes: a double copy description, JHEP 04 (2017) 037 [arXiv:1611.04409] [INSPIRE].
  85. [85]
    A. Luna et al., Perturbative spacetimes from Yang-Mills theory, JHEP 04 (2017) 069 [arXiv:1611.07508] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  86. [86]
    W.D. Goldberger and A.K. Ridgway, Radiation and the classical double copy for color charges, Phys. Rev. D 95 (2017) 125010 [arXiv:1611.03493] [INSPIRE].
  87. [87]
    W.D. Goldberger, S.G. Prabhu and J.O. Thompson, Classical gluon and graviton radiation from the bi-adjoint scalar double copy, Phys. Rev. D 96 (2017) 065009 [arXiv:1705.09263] [INSPIRE].
  88. [88]
    T. Adamo, E. Casali, L. Mason and S. Nekovar, Scattering on plane waves and the double copy, Class. Quant. Grav. 35 (2018) 015004 [arXiv:1706.08925] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  89. [89]
    W.D. Goldberger and A.K. Ridgway, Bound states and the classical double copy, Phys. Rev. D 97 (2018) 085019 [arXiv:1711.09493] [INSPIRE].
  90. [90]
    W.D. Goldberger, J. Li and S.G. Prabhu, Spinning particles, axion radiation and the classical double copy, Phys. Rev. D 97 (2018) 105018 [arXiv:1712.09250] [INSPIRE].
  91. [91]
    N. Bahjat-Abbas, A. Luna and C.D. White, The Kerr-Schild double copy in curved spacetime, JHEP 12 (2017) 004 [arXiv:1710.01953] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  92. [92]
    M. Carrillo-González, R. Penco and M. Trodden, The classical double copy in maximally symmetric spacetimes, JHEP 04 (2018) 028 [arXiv:1711.01296] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  93. [93]
    J. Li and S.G. Prabhu, Gravitational radiation from the classical spinning double copy, Phys. Rev. D 97 (2018) 105019 [arXiv:1803.02405] [INSPIRE].
  94. [94]
    L. Borsten, M.J. Duff, L.J. Hughes and S. Nagy, Magic square from Yang-Mills squared, Phys. Rev. Lett. 112 (2014) 131601 [arXiv:1301.4176] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    A. Anastasiou, L. Borsten, M.J. Duff, L.J. Hughes and S. Nagy, Super Yang-Mills, division algebras and triality, JHEP 08 (2014) 080 [arXiv:1309.0546] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  96. [96]
    A. Anastasiou, L. Borsten, M.J. Duff, L.J. Hughes and S. Nagy, Yang-Mills origin of gravitational symmetries, Phys. Rev. Lett. 113 (2014) 231606 [arXiv:1408.4434] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    A. Anastasiou, L. Borsten, M.J. Hughes and S. Nagy, Global symmetries of Yang-Mills squared in various dimensions, JHEP 01 (2016) 148 [arXiv:1502.05359] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  98. [98]
    M. Chiodaroli, Simplifying amplitudes in Maxwell-Einstein and Yang-Mills-Einstein supergravities, De Gruyter, Berlin, Munich, Germany and Boston, U.S.A., (2018), pg. 266 [arXiv:1607.04129] [INSPIRE].
  99. [99]
    N. Arkani-Hamed, L. Rodina and J. Trnka, Locality and unitarity of scattering amplitudes from singularities and gauge invariance, Phys. Rev. Lett. 120 (2018) 231602 [arXiv:1612.02797] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    S. Ferrara and D. Lüst, Spin-four N = 7 W-supergravity: S-fold and double copy construction, JHEP 07 (2018) 114 [arXiv:1805.10022] [INSPIRE].
  101. [101]
    Z. Bern, T. Dennen, Y.-T. Huang and M. Kiermaier, Gravity as the square of gauge theory, Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].
  102. [102]
    R. Monteiro and D. O’Connell, The kinematic algebra from the self-dual sector, JHEP 07 (2011) 007 [arXiv:1105.2565] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  103. [103]
    C. Cheung and C.-H. Shen, Symmetry for flavor-kinematics duality from an action, Phys. Rev. Lett. 118 (2017) 121601 [arXiv:1612.00868] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N -point superstring disk amplitude II. Amplitude and hypergeometric function structure, Nucl. Phys. B 873 (2013) 461 [arXiv:1106.2646] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  105. [105]
    C.R. Mafra and O. Schlotterer, The structure of n-point one-loop open superstring amplitudes, JHEP 08 (2014) 099 [arXiv:1203.6215] [INSPIRE].
  106. [106]
    J. Broedel, O. Schlotterer and S. Stieberger, Polylogarithms, multiple zeta values and superstring amplitudes, Fortsch. Phys. 61 (2013) 812 [arXiv:1304.7267] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  107. [107]
    Y.-T. Huang, O. Schlotterer and C. Wen, Universality in string interactions, JHEP 09 (2016) 155 [arXiv:1602.01674] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  108. [108]
    J.J.M. Carrasco, C.R. Mafra and O. Schlotterer, Abelian Z-theory: NLSM amplitudes and α -corrections from the open string, JHEP 06 (2017) 093 [arXiv:1608.02569] [INSPIRE].
  109. [109]
    J.J.M. Carrasco, C.R. Mafra and O. Schlotterer, Semi-Abelian Z-theory: NLSM+ϕ 3 from the open string, JHEP 08 (2017) 135 [arXiv:1612.06446] [INSPIRE].
  110. [110]
    P. Tourkine and P. Vanhove, Higher-loop amplitude monodromy relations in string and gauge theory, Phys. Rev. Lett. 117 (2016) 211601 [arXiv:1608.01665] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    S. Hohenegger and S. Stieberger, Monodromy relations in higher-loop string amplitudes, Nucl. Phys. B 925 (2017) 63 [arXiv:1702.04963] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  112. [112]
    Y. Geyer and R. Monteiro, Two-loop scattering amplitudes from ambitwistor strings: from genus two to the nodal Riemann sphere, arXiv:1805.05344 [INSPIRE].
  113. [113]
    G. Chen and Y.-J. Du, Amplitude relations in non-linear σ-model, JHEP 01 (2014) 061 [arXiv:1311.1133] [INSPIRE].
  114. [114]
    C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective field theories from soft limits of scattering amplitudes, Phys. Rev. Lett. 114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  116. [116]
    F. Cachazo, P. Cha and S. Mizera, Extensions of theories from soft limits, JHEP 06 (2016) 170 [arXiv:1604.03893] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  117. [117]
    Y.-J. Du and C.-H. Fu, Explicit BCJ numerators of nonlinear sigma model, JHEP 09 (2016) 174 [arXiv:1606.05846] [INSPIRE].
  118. [118]
    C. Cheung, G.N. Remmen, C.-H. Shen and C. Wen, Pions as gluons in higher dimensions, JHEP 04 (2018) 129 [arXiv:1709.04932] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  119. [119]
    D. Ponomarev, Chiral higher spin theories and self-duality, JHEP 12 (2017) 141 [arXiv:1710.00270] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  120. [120]
    B. de Wit and S. Ferrara, On higher order invariants in extended supergravity, Phys. Lett. B 81 (1979) 317 [INSPIRE].
  121. [121]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  122. [122]
    R. Roiban, M. Spradlin and A. Volovich, On the tree level S matrix of Yang-Mills theory, Phys. Rev. D 70 (2004) 026009 [hep-th/0403190] [INSPIRE].
  123. [123]
    A.A. Tseytlin, On divergences in non-minimal N = 4 conformal supergravity, J. Phys. A 50 (2017) 48LT01 [arXiv:1708.08727] [INSPIRE].
  124. [124]
    E.S. Fradkin and A.A. Tseytlin, Conformal anomaly in Weyl theory and anomaly free superconformal theories, Phys. Lett. B 134 (1984) 187 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  125. [125]
    E.S. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  126. [126]
    H. Romer and P. van Nieuwenhuizen, Axial anomalies in N = 4 conformal supergravity, Phys. Lett. B 162 (1985) 290 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  127. [127]
    D. Butter, F. Ciceri, B. de Wit and B. Sahoo, Construction of all N = 4 conformal supergravities, Phys. Rev. Lett. 118 (2017) 081602 [arXiv:1609.09083] [INSPIRE].
  128. [128]
    J. Maldacena, Einstein gravity from conformal gravity, arXiv:1105.5632 [INSPIRE].
  129. [129]
    T. Adamo and L. Mason, Conformal and Einstein gravity from twistor actions, Class. Quant. Grav. 31 (2014) 045014 [arXiv:1307.5043] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  130. [130]
    T. Adamo, P. Hähnel and T. McLoughlin, Conformal higher spin scattering amplitudes from twistor space, JHEP 04 (2017) 021 [arXiv:1611.06200] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  131. [131]
    M. Beccaria, S. Nakach and A.A. Tseytlin, On triviality of S-matrix in conformal higher spin theory, JHEP 09 (2016) 034 [arXiv:1607.06379] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  132. [132]
    T. Adamo, S. Nakach and A.A. Tseytlin, Scattering of conformal higher spin fields, JHEP 07 (2018) 016 [arXiv:1805.00394] [INSPIRE].
  133. [133]
    P.K. Townsend and P. van Nieuwenhuizen, Simplifications of conformal supergravity, Phys. Rev. D 19 (1979) 3166 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  134. [134]
    S. Ferrara and B. Zumino, Structure of conformal supergravity, Nucl. Phys. B 134 (1978) 301 [INSPIRE].
  135. [135]
    M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Superconformal unified field theory, Phys. Rev. Lett. 39 (1977) 1109 [INSPIRE].ADSCrossRefGoogle Scholar
  136. [136]
    A. Das, M. Kaku and P.K. Townsend, A unified approach to matter coupling in Weyl and Einstein supergravity, Phys. Rev. Lett. 40 (1978) 1215 [INSPIRE].ADSCrossRefGoogle Scholar
  137. [137]
    J.A. Farrow and A.E. Lipstein, New worldsheet formulae for conformal supergravity amplitudes, JHEP 07 (2018) 074 [arXiv:1805.04504] [INSPIRE].ADSCrossRefGoogle Scholar
  138. [138]
    D.G. Boulware and L.S. Brown, Tree graphs and classical fields, Phys. Rev. 172 (1968) 1628 [INSPIRE].ADSCrossRefGoogle Scholar
  139. [139]
    F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys. B 306 (1988) 759 [INSPIRE].
  140. [140]
    J. Broedel and B. Wurm, New twistor string theories revisited, Phys. Lett. B 675 (2009) 463 [arXiv:0902.0550] [INSPIRE].
  141. [141]
    H. Elvang and Y.-T. Huang, Scattering amplitudes in gauge theory and gravity, Cambridge University Press, Cambridge, U.K., (2015) [INSPIRE].
  142. [142]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard, Gravity and Yang-Mills amplitude relations, Phys. Rev. D 82 (2010) 107702 [arXiv:1005.4367] [INSPIRE].
  143. [143]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard, New identities among gauge theory amplitudes, Phys. Lett. B 691 (2010) 268 [arXiv:1006.3214] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  144. [144]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard, Proof of gravity and Yang-Mills amplitude relations, JHEP 09 (2010) 067 [arXiv:1007.3111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  145. [145]
    V.P. Nair, A current algebra for some gauge theory amplitudes, Phys. Lett. B 214 (1988) 215 [INSPIRE].ADSCrossRefGoogle Scholar
  146. [146]
    L. Dolan and J.N. Ihry, Conformal supergravity tree amplitudes from open twistor string theory, Nucl. Phys. B 819 (2009) 375 [arXiv:0811.1341] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  147. [147]
    H. Elvang, D.Z. Freedman and M. Kiermaier, Solution to the Ward identities for superamplitudes, JHEP 10 (2010) 103 [arXiv:0911.3169] [INSPIRE].
  148. [148]
    J.H. Schwarz, Dilaton-axion symmetry, in International Workshop on String Theory, Quantum Gravity and the Unification of Fundamental Interactions, Rome, Italy, 21-26 September 1992, pg. 503 [hep-th/9209125] [INSPIRE].
  149. [149]
    E. Cremmer, J. Scherk and S. Ferrara, SU(4) invariant supergravity theory, Phys. Lett. B 74 (1978) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  150. [150]
    J. Polchinski, String theory. Vol. 2: superstring theory and beyond, Cambridge University Press, Cambridge, U.K., (2007) [INSPIRE].
  151. [151]
    S. Ferrara, R. Kallosh and A. Van Proeyen, Conjecture on hidden superconformal symmetry of N = 4 supergravity, Phys. Rev. D 87 (2013) 025004 [arXiv:1209.0418] [INSPIRE].
  152. [152]
    M. Chiodaroli, M. Gutperle and D. Krym, Half-BPS solutions locally asymptotic to AdS 3 × S 3 and interface conformal field theories, JHEP 02 (2010) 066 [arXiv:0910.0466] [INSPIRE].
  153. [153]
    S. Weinzierl, Tales of 1001 gluons, Phys. Rept. 676 (2017) 1 [arXiv:1610.05318] [INSPIRE].
  154. [154]
    J.J.M. Carrasco, R. Kallosh, R. Roiban and A.A. Tseytlin, On the U(1) duality anomaly and the S-matrix of N = 4 supergravity, JHEP 07 (2013) 029 [arXiv:1303.6219] [INSPIRE].
  155. [155]
    N. Marcus, Composite anomalies in supergravity, Phys. Lett. B 157 (1985) 383 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  156. [156]
    Z. Bern, A. Edison, D. Kosower and J. Parra-Martinez, Curvature-squared multiplets, evanescent effects and the U(1) anomaly in N = 4 supergravity, Phys. Rev. D 96 (2017) 066004 [arXiv:1706.01486] [INSPIRE].ADSCrossRefGoogle Scholar
  157. [157]
    Z. Bern, J. Parra-Martinez and R. Roiban, Cancelling the U(1) anomaly in the S-matrix of N = 4 supergravity, arXiv:1712.03928 [INSPIRE].
  158. [158]
    Z. Bern, A. De Freitas and H.L. Wong, On the coupling of gravitons to matter, Phys. Rev. Lett. 84 (2000) 3531 [hep-th/9912033] [INSPIRE].ADSCrossRefGoogle Scholar
  159. [159]
    B. Feng and S. He, Graphs, determinants and gravity amplitudes, JHEP 10 (2012) 121 [arXiv:1207.3220] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  160. [160]
    A. Hodges, New expressions for gravitational scattering amplitudes, JHEP 07 (2013) 075 [arXiv:1108.2227] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  161. [161]
    A. Hodges, A simple formula for gravitational MHV amplitudes, arXiv:1204.1930 [INSPIRE].
  162. [162]
    F. Cachazo, S. He and E.Y. Yuan, Einstein-Yang-Mills scattering amplitudes from scattering equations, JHEP 01 (2015) 121 [arXiv:1409.8256] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  163. [163]
    G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Ann. Inst. H. Poincaré Phys. Theor. A 20 (1974) 69 [INSPIRE].
  164. [164]
    S. Deser and A.N. Redlich, String induced gravity and ghost freedom, Phys. Lett. B 176 (1986) 350 [Erratum ibid. B 186 (1987) 461] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  165. [165]
    F. Ciceri and B. Sahoo, Towards the full N = 4 conformal supergravity action, JHEP 01 (2016) 059 [arXiv:1510.04999] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  166. [166]
    C. Boucher-Veronneau and A.J. Larkoski, Constructing amplitudes from their soft limits, JHEP 09 (2011) 130 [arXiv:1108.5385] [INSPIRE].ADSCrossRefGoogle Scholar
  167. [167]
    J.A. Farrow, A Monte Carlo approach to the 4D scattering equations, JHEP 08 (2018) 085 [arXiv:1806.02732] [INSPIRE].ADSCrossRefGoogle Scholar
  168. [168]
    M. de Roo, The R 2 action in d = 10 conformal supergravity, Nucl. Phys. B 372 (1992) 243 [INSPIRE].
  169. [169]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge Univ. Press, Cambridge, U.K., (2012) [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  2. 2.Nordita, Stockholm University and KTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations