Journal of High Energy Physics

, 2018:79 | Cite as

Type II Seesaw and tau lepton at the HL-LHC, HE-LHC and FCC-hh

Open Access
Regular Article - Theoretical Physics


The tau lepton plays important role in distinguishing neutrino mass patterns and determining the chirality nature in heavy scalar mediated neutrino mass models, in the light of the neutrino oscillation experiments and its polarization measurement. We investigate the lepton flavor signatures with tau lepton at LHC upgrades, i.e. HL-LHC, HE-LHC and FCC-hh, through leptonic processes from doubly charged Higgs in the Type II Seesaw. We find that for the channel with one tau lepton in final states, the accessible doubly charged Higgs mass at HL-LHC can reach 655 GeV and 695 GeV for the neutrino mass patterns of normal hierarchy (NH) and inverted hierarchy (IH) respectively, with the luminosity of 3000 fb−1. Higher masses, 975-1930 GeV for NH and 1035-2070 GeV for IH, can be achieved at HE-LHC and FCC-hh.


Beyond Standard Model Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    W. Konetschny and W. Kummer, Nonconservation of total lepton number with scalar bosons, Phys. Lett. B 70 (1977) 433 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    T.P. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. de Gouvêa, J. Jenkins and N. Vasudevan, Neutrino phenomenology of very low-energy seesaws, Phys. Rev. D 75 (2007) 013003 [hep-ph/0608147] [INSPIRE].
  8. [8]
    A. de Gouvêa, GeV seesaw, accidentally small neutrino masses and Higgs decays to neutrinos, arXiv:0706.1732 [INSPIRE].
  9. [9]
    F.F. Deppisch, P.S. Bhupal Dev and A. Pilaftsis, Neutrinos and collider physics, New J. Phys. 17 (2015) 075019 [arXiv:1502.06541] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    Y. Cai, T. Han, T. Li and R. Ruiz, Lepton number violation: seesaw models and their collider tests, Front. Phys. 6 (2018) 40 [arXiv:1711.02180] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    A.G. Akeroyd and C.-W. Chiang, Doubly charged Higgs bosons and three-lepton signatures in the Higgs triplet model, Phys. Rev. D 80 (2009) 113010 [arXiv:0909.4419] [INSPIRE].
  12. [12]
    A.G. Akeroyd, C.-W. Chiang and N. Gaur, Leptonic signatures of doubly charged Higgs boson production at the LHC, JHEP 11 (2010) 005 [arXiv:1009.2780] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Melfo, M. Nemevšek, F. Nesti, G. Senjanović and Y. Zhang, Type II seesaw at LHC: the roadmap, Phys. Rev. D 85 (2012) 055018 [arXiv:1108.4416] [INSPIRE].
  14. [14]
    B. Dutta, R. Eusebi, Y. Gao, T. Ghosh and T. Kamon, Exploring the doubly charged Higgs boson of the left-right symmetric model using vector boson fusionlike events at the LHC, Phys. Rev. D 90 (2014) 055015 [arXiv:1404.0685] [INSPIRE].
  15. [15]
    G. Bambhaniya, J. Chakrabortty, J. Gluza, T. Jelinski and R. Szafron, Search for doubly charged Higgs bosons through vector boson fusion at the LHC and beyond, Phys. Rev. D 92 (2015) 015016 [arXiv:1504.03999] [INSPIRE].
  16. [16]
    G. Bambhaniya, P.S.B. Dev, S. Goswami and M. Mitra, The scalar triplet contribution to lepton flavour violation and neutrinoless double beta decay in left-right symmetric model, JHEP 04 (2016) 046 [arXiv:1512.00440] [INSPIRE].ADSGoogle Scholar
  17. [17]
    K.S. Babu and S. Jana, Probing doubly charged Higgs bosons at the LHC through photon initiated processes, Phys. Rev. D 95 (2017) 055020 [arXiv:1612.09224] [INSPIRE].
  18. [18]
    P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Probing the Higgs sector of the minimal left-right symmetric model at future hadron colliders, JHEP 05 (2016) 174 [arXiv:1602.05947] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    Y. Sui and Y. Zhang, Prospects of type-II seesaw models at future colliders in light of the DAMPE e + e excess, Phys. Rev. D 97 (2018) 095002 [arXiv:1712.03642] [INSPIRE].
  20. [20]
    M. Mitra, S. Niyogi and M. Spannowsky, Type-II seesaw model and multilepton signatures at hadron colliders, Phys. Rev. D 95 (2017) 035042 [arXiv:1611.09594] [INSPIRE].
  21. [21]
    P.S.B. Dev, C.M. Vila and W. Rodejohann, Naturalness in testable type-II seesaw scenarios, Nucl. Phys. B 921 (2017) 436 [arXiv:1703.00828] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    ATLAS collaboration, Search for doubly charged Higgs boson production in multi-lepton final states with the ATLAS detector using proton-proton collisions at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 78 (2018) 199 [arXiv:1710.09748] [INSPIRE].
  23. [23]
    P. Fileviez Perez, T. Han, G.-Y. Huang, T. Li and K. Wang, Testing a neutrino mass generation mechanism at the LHC, Phys. Rev. D 78 (2008) 071301 [arXiv:0803.3450] [INSPIRE].
  24. [24]
    P. Fileviez Perez, T. Han, G.-Y. Huang, T. Li and K. Wang, Neutrino masses and the CERN LHC: testing type II seesaw, Phys. Rev. D 78 (2008) 015018 [arXiv:0805.3536] [INSPIRE].
  25. [25]
    CMS collaboration, A search for doubly-charged Higgs boson production in three and four lepton final states at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-16-036, CERN, Geneva, Switzerland, (2016).
  26. [26]
    F. del Águila and M. Chala, LHC bounds on lepton number violation mediated by doubly and singly-charged scalars, JHEP 03 (2014) 027 [arXiv:1311.1510] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    A. Zee, Quantum numbers of Majorana neutrino masses, Nucl. Phys. B 264 (1986) 99 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    K.S. Babu, Model of ‘calculable’ Majorana neutrino masses, Phys. Lett. B 203 (1988) 132 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. Alcaide, M. Chala and A. Santamaria, LHC signals of radiatively-induced neutrino masses and implications for the Zee-Babu model, Phys. Lett. B 779 (2018) 107 [arXiv:1710.05885] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    H. Sugiyama, K. Tsumura and H. Yokoya, Discrimination of models including doubly charged scalar bosons by using tau lepton decay distributions, Phys. Lett. B 717 (2012) 229 [arXiv:1207.0179] [INSPIRE].
  31. [31]
    Double CHOOZ collaboration, Y. Abe et al., Indication of reactor \( {\overline{\nu}}_e \) disappearance in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].
  32. [32]
    RENO collaboration, J.K. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].
  33. [33]
    Daya Bay collaboration, F.P. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].
  34. [34]
    T2K collaboration, K. Abe et al., Combined analysis of neutrino and antineutrino oscillations at T2K, Phys. Rev. Lett. 118 (2017) 151801 [arXiv:1701.00432] [INSPIRE].
  35. [35]
    NOvA collaboration, P. Adamson et al., First measurement of electron neutrino appearance in NOvA, Phys. Rev. Lett. 116 (2016) 151806 [arXiv:1601.05022] [INSPIRE].
  36. [36]
    T2K collaboration, K. Abe et al., Observation of electron neutrino appearance in a muon neutrino beam, Phys. Rev. Lett. 112 (2014) 061802 [arXiv:1311.4750] [INSPIRE].
  37. [37]
    S. Jadach, J.H. Kuhn and Z. Was, TAUOLA: a library of Monte Carlo programs to simulate decays of polarized tau leptons, Comput. Phys. Commun. 64 (1990) 275 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Jezabek, Z. Was, S. Jadach and J.H. Kuhn, The tau decay library TAUOLA, update with exact O(α) QED corrections in \( \tau \to \mu (e)\nu \overline{\nu} \) decay modes, Comput. Phys. Commun. 70 (1992) 69 [INSPIRE].
  39. [39]
    S. Jadach, Z. Was, R. Decker and J.H. Kuhn, The tau decay library TAUOLA: version 2.4, Comput. Phys. Commun. 76 (1993) 361 [INSPIRE].
  40. [40]
    K. Hagiwara, T. Li, K. Mawatari and J. Nakamura, TauDecay: a library to simulate polarized tau decays via FeynRules and MadGraph5, Eur. Phys. J. C 73 (2013) 2489 [arXiv:1212.6247] [INSPIRE].
  41. [41]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    NuFIT 3.2,, (2018).
  43. [43]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  44. [44]
    M. Muhlleitner and M. Spira, A note on doubly charged Higgs pair production at hadron colliders, Phys. Rev. D 68 (2003) 117701 [hep-ph/0305288] [INSPIRE].
  45. [45]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    B.K. Bullock, K. Hagiwara and A.D. Martin, Tau polarization as a signal of charged Higgs bosons, Phys. Rev. Lett. 67 (1991) 3055 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    B.K. Bullock, K. Hagiwara and A.D. Martin, Tau polarization and its correlations as a probe of new physics, Nucl. Phys. B 395 (1993) 499 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].
  49. [49]
    R.N. Mohapatra and J.C. Pati, Left-right gauge symmetry and an isoconjugate model of CP-violation, Phys. Rev. D 11 (1975) 566 [INSPIRE].
  50. [50]
    R.N. Mohapatra and J.C. Pati, A natural left-right symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].
  51. [51]
    G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    G. Senjanović, Spontaneous breakdown of parity in a class of gauge theories, Nucl. Phys. B 153 (1979) 334 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    H. Georgi and M. Machacek, Doubly charged Higgs bosons, Nucl. Phys. B 262 (1985) 463 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M.S. Chanowitz and M. Golden, Higgs boson triplets with M W = M Z cos θ ω , Phys. Lett. B 165 (1985) 105 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.School of PhysicsNankai UniversityTianjinChina

Personalised recommendations