Journal of High Energy Physics

, 2018:70 | Cite as

Universal magnetoresponse in QCD and \( \mathcal{N}=4 \) SYM

  • Gergely Endrődi
  • Matthias KaminskiEmail author
  • Andreas Schäfer
  • Jackson Wu
  • Laurence Yaffe
Open Access
Regular Article - Theoretical Physics


Using recent lattice data on the thermodynamics of QCD in the presence of a background magnetic field, we show that the ratio of transverse to longitudinal pressure exhibits, to good accuracy, a simple scaling behavior over a wide range of temperature and magnetic field, essentially depending only on the ratio \( T/\sqrt{B} \). We compare this QCD response to the corresponding magnetoresponse in maximally supersymmetric Yang Mills theory. Given suitable calibrations defining the comparison, we find excellent agreement. This may be viewed as a further test of the applicability of holographic models for hot QCD.


Conformal Field Theory Gauge-gravity correspondence Lattice QCD Quark-Gluon Plasma 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  2. [2]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    O. DeWolfe, S.S. Gubser, C. Rosen and D. Teaney, Heavy ions and string theory, Prog. Part. Nucl. Phys. 75 (2014) 86 [arXiv:1304.7794] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A. Adams, L.D. Carr, T. Schäfer, P. Steinberg and J.E. Thomas, Strongly Correlated Quantum Fluids: Ultracold Quantum Gases, Quantum Chromodynamic Plasmas and Holographic Duality, New J. Phys. 14 (2012) 115009 [arXiv:1205.5180] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].
  6. [6]
    P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT, Phys. Rev. D 73 (2006) 045013 [hep-th/0512162] [INSPIRE].
  8. [8]
    P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in \( \mathcal{N}=4 \) supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].
  9. [9]
    P.M. Chesler and L.G. Yaffe, Holography and off-center collisions of localized shock waves, JHEP 10 (2015) 070 [arXiv:1501.04644] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    D. Kharzeev, Parity violation in hot QCD: Why it can happen and how to look for it, Phys. Lett. B 633 (2006) 260 [hep-ph/0406125] [INSPIRE].
  11. [11]
    D.E. Kharzeev, K. Landsteiner, A. Schmitt and H.-U. Yee, ’Strongly interacting matter in magnetic fields’: an overview, Lect. Notes Phys. 871 (2013) 1 [arXiv:1211.6245] [INSPIRE].
  12. [12]
    S. Waeber, A. Schäfer, A. Vuorinen and L.G. Yaffe, Finite coupling corrections to holographic predictions for hot QCD, JHEP 11 (2015) 087 [arXiv:1509.02983] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Waeber and A. Schäfer, Studying a charged quark gluon plasma via holography and higher derivative corrections, JHEP 07 (2018) 069 [arXiv:1804.01912] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Panero, Thermodynamics of the QCD plasma and the large-N limit, Phys. Rev. Lett. 103 (2009) 232001 [arXiv:0907.3719] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G.S. Bali et al., Mesons in large-N QCD, JHEP 06 (2013) 071 [arXiv:1304.4437] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    G.S. Bali, F. Bruckmann, G. Endrődi, F. Gruber and A. Schäfer, Magnetic field-induced gluonic (inverse) catalysis and pressure (an)isotropy in QCD, JHEP 04 (2013) 130 [arXiv:1303.1328] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    G.S. Bali, F. Bruckmann, G. Endrődi, S.D. Katz and A. Schäfer, The QCD equation of state in background magnetic fields, JHEP 08 (2014) 177 [arXiv:1406.0269] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    Y. Nakayama, Scale invariance vs conformal invariance, Phys. Rept. 569 (2015) 1 [arXiv:1302.0884] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    S. Borsányi, Z. Fodor, C. Hölbling, S.D. Katz, S. Krieg and K.K. Szabo, Full result for the QCD equation of state with 2+1 flavors, Phys. Lett. B 730 (2014) 99 [arXiv:1309.5258] [INSPIRE].
  20. [20]
    HotQCD collaboration, A. Bazavov et al., Equation of state in (2 + 1)-flavor QCD, Phys. Rev. D 90 (2014) 094503 [arXiv:1407.6387] [INSPIRE].
  21. [21]
    J.F. Fuini and L.G. Yaffe, Far-from-equilibrium dynamics of a strongly coupled non-Abelian plasma with non-zero charge density or external magnetic field, JHEP 07 (2015) 116 [arXiv:1503.07148] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    E. D’Hoker and P. Kraus, Magnetic Brane Solutions in AdS, JHEP 10 (2009) 088 [arXiv:0908.3875] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    S. Janiszewski and M. Kaminski, Quasinormal modes of magnetic and electric black branes versus far from equilibrium anisotropic fluids, Phys. Rev. D 93 (2016) 025006 [arXiv:1508.06993] [INSPIRE].
  24. [24]
    R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B 460 (1996) 299 [hep-th/9510101] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    K. Pilch and N.P. Warner, \( \mathcal{N}=2 \) supersymmetric RG flows and the IIB dilaton, Nucl. Phys. B 594 (2001) 209 [hep-th/0004063] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    A. Buchel and J.T. Liu, Thermodynamics of the \( \mathcal{N}=2\ast \) flow, JHEP 11 (2003) 031 [hep-th/0305064] [INSPIRE].
  27. [27]
    C. Hoyos, S. Paik and L.G. Yaffe, Screening in strongly coupled \( \mathcal{N}=2\ast \) supersymmetric Yang-Mills plasma, JHEP 10 (2011) 062 [arXiv:1108.2053] [INSPIRE].
  28. [28]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality cascades and χSB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    O. Aharony, A. Buchel and P. Kerner, The Black hole in the throat: Thermodynamics of strongly coupled cascading gauge theories, Phys. Rev. D 76 (2007) 086005 [arXiv:0706.1768] [INSPIRE].
  30. [30]
    H. Isono, G. Mandal and T. Morita, Thermodynamics of QCD from Sakai-Sugimoto Model, JHEP 12 (2015) 006 [arXiv:1507.08949] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  31. [31]
    T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M. Attems et al., Thermodynamics, transport and relaxation in non-conformal theories, JHEP 10 (2016) 155 [arXiv:1603.01254] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsGoethe Universität FrankfurtFrankfurt am MainGermany
  2. 2.Department of Physics and AstronomyUniversity of AlabamaTuscaloosaU.S.A.
  3. 3.Institut für Theoretische PhysikUniversität RegensburgRegensburgGermany
  4. 4.Department of PhysicsUniversity of WashingtonSeattleU.S.A.

Personalised recommendations