Advertisement

Journal of High Energy Physics

, 2018:67 | Cite as

(0,2) hybrid models

  • Marco Bertolini
  • M. Ronen Plesser
Open Access
Regular Article - Theoretical Physics
  • 19 Downloads

Abstract

We introduce a class of (0,2) superconformal field theories based on hybrid geometries, generalizing various known constructions. We develop techniques for the computation of the complete massless spectrum when the theory can be interpreted as determining a perturbative heterotic string compactification. We provide evidence for surprising properties regarding RG flows and IR accidental symmetries in (0,2) hybrid CFTs. We also study the conditions for embedding a hybrid theory in a particular class of gauged linear sigma models. This perspective suggests that our construction generates models which cannot be realized or analyzed by previously known methods.

Keywords

Superstrings and Heterotic Strings Conformal Field Models in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. McOrist, The Revival of (0,2) Linear σ-models, Int. J. Mod. Phys. A 26 (2011) 1 [arXiv:1010.4667] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    E. Sharpe, A few recent developments in 2d (2,2) and (0,2) theories, Proc. Symp. Pure Math. 93 (2015) 67 [arXiv:1501.01628] [INSPIRE].
  3. [3]
    J. McOrist and I.V. Melnikov, Summing the instantons in half-twisted linear σ-models, JHEP 02 (2009) 026 [arXiv:0810.0012] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    I.V. Melnikov and M.R. Plesser, A (0,2) mirror map, JHEP 02 (2011) 001 [arXiv:1003.1303] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    P.S. Aspinwall, I.V. Melnikov and M.R. Plesser, (0,2) elephants, JHEP 01 (2012) 060 [arXiv:1008.2156] [INSPIRE].
  6. [6]
    I. Melnikov, S. Sethi and E. Sharpe, Recent Developments in (0,2) Mirror Symmetry, SIGMA 8 (2012) 068 [arXiv:1209.1134] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  7. [7]
    P.S. Aspinwall and B. Gaines, Rational Curves and (0,2)-Deformations, J. Geom. Phys. 88 (2014) 1 [arXiv:1404.7802] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    P.S. Aspinwall, A McKay-like correspondence for (0, 2)-deformations, Adv. Theor. Math. Phys. 18 (2014) 761 [arXiv:1110.2524] [INSPIRE].
  9. [9]
    C. Closset, W. Gu, B. Jia and E. Sharpe, Localization of twisted \( \mathcal{N}=\left(0,2\right) \) gauged linear σ-models in two dimensions, JHEP 03 (2016) 070 [arXiv:1512.08058] [INSPIRE].
  10. [10]
    V. Bouchard, M. Cvetič and R. Donagi, Tri-linear couplings in an heterotic minimal supersymmetric standard model, Nucl. Phys. B 745 (2006) 62 [hep-th/0602096] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    R. Donagi, R. Reinbacher and S.-T. Yau, Yukawa couplings on quintic threefolds, hep-th/0605203 [INSPIRE].
  12. [12]
    B.R. Greene, Superconformal compactifications in weighted projective space, Commun. Math. Phys. 130 (1990) 335 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    J. Distler and S. Kachru, (0,2) Landau-Ginzburg theory, Nucl. Phys. B 413 (1994) 213 [hep-th/9309110] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    I.V. Melnikov, (0,2) Landau-Ginzburg Models and Residues, JHEP 09 (2009) 118 [arXiv:0902.3908] [INSPIRE].
  15. [15]
    T. Kawai and K. Mohri, Geometry of (0,2) Landau-Ginzburg orbifolds, Nucl. Phys. B 425 (1994) 191 [hep-th/9402148] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    I.V. Melnikov and S. Sethi, Half-twisted (0,2) Landau-Ginzburg models, JHEP 03 (2008) 040 [arXiv:0712.1058] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    A. Gadde and P. Putrov, Exact solutions of (0,2) Landau-Ginzburg models, arXiv:1608.07753 [INSPIRE].
  18. [18]
    F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    I.V. Melnikov, Relevant deformations and c-extremization, JHEP 09 (2016) 169 [arXiv:1603.08935] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    M. Bertolini, I.V. Melnikov and M.R. Plesser, Accidents in (0,2) Landau-Ginzburg theories, JHEP 12 (2014) 157 [arXiv:1405.4266] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    C. Beasley and E. Witten, Residues and world sheet instantons, JHEP 10 (2003) 065 [hep-th/0304115] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    M. Bertolini and M.R. Plesser, Worldsheet instantons and (0,2) linear models, JHEP 08 (2015) 081 [arXiv:1410.4541] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    M. Bertolini, I.V. Melnikov and M.R. Plesser, Hybrid conformal field theories, JHEP 05 (2014) 043 [arXiv:1307.7063] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    E.M. Babalic, D. Doryn, C.I. Lazaroiu and M. Tavakol, Differential Models for B-Type Open-Closed Topological Landau-Ginzburg Theories, Commun. Math. Phys. 361 (2018) 1169 [arXiv:1610.09103] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    E.M. Babalic, D. Doryn, C.I. Lazaroiu and M. Tavakol, On B-type Open-Closed Landau-Ginzburg Theories Defined on Calabi-Yau Stein Manifolds, Commun. Math. Phys. 362 (2018) 129 [arXiv:1610.09813] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    A. Basalaev, A. Takahashi and E. Werner, Orbifold Jacobian algebras for invertible polynomials, arXiv:1608.08962 [INSPIRE].
  28. [28]
    K. Saito, Coherence of direct images of the De Rham complex, arXiv:1502.04872 [INSPIRE].
  29. [29]
    T.-M. Chiang, J. Distler and B.R. Greene, Some features of (0,2) moduli space, Nucl. Phys. B 496 (1997) 590 [hep-th/9702030] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    J. Guffin and E. Sharpe, A-twisted heterotic Landau-Ginzburg models, J. Geom. Phys. 59 (2009) 1581 [arXiv:0801.3955] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    J. Distler, Notes on (0,2) superconformal field theories, hep-th/9502012 [INSPIRE].
  32. [32]
    M. Bertolini and M. Romo, Aspects of (2,2) and (0,2) hybrid models, arXiv:1801.04100 [INSPIRE].
  33. [33]
    S. Kachru and E. Witten, Computing the complete massless spectrum of a Landau-Ginzburg orbifold, Nucl. Phys. B 407 (1993) 637 [hep-th/9307038] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    I.V. Melnikov and E. Sharpe, On marginal deformations of (0,2) non-linear σ-models, Phys. Lett. B 705 (2011) 529 [arXiv:1110.1886] [INSPIRE].
  35. [35]
    S.H. Katz and E. Sharpe, Notes on certain (0,2) correlation functions, Commun. Math. Phys. 262 (2006) 611 [hep-th/0406226] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    E. Silverstein and E. Witten, Global U(1) R symmetry and conformal invariance of (0,2) models, Phys. Lett. B 328 (1994) 307 [hep-th/9403054] [INSPIRE].
  37. [37]
    D. Gepner, Exactly Solvable String Compactifications on Manifolds of SU(N) Holonomy, Phys. Lett. B 199 (1987) 380 [INSPIRE].
  38. [38]
    A. Adams, J. Distler and M. Ernebjerg, Topological heterotic rings, Adv. Theor. Math. Phys. 10 (2006) 657 [hep-th/0506263] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  39. [39]
    C. Vafa, String Vacua and Orbifoldized L-G Models, Mod. Phys. Lett. A 4 (1989) 1169 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    P.S. Aspinwall and M.R. Plesser, Decompactifications and Massless D-branes in Hybrid Models, JHEP 07 (2010) 078 [arXiv:0909.0252] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    K. Hori and J. Knapp, Linear σ-models with strongly coupled phases - one parameter models, JHEP 11 (2013) 070 [arXiv:1308.6265] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    R. Bott and L.W. Tu, Graduate Texts in Mathematics. Vol. 82: Differential forms in algebraic topology, Springer-Verlag, New York U.S.A. (1982).CrossRefGoogle Scholar
  43. [43]
    E.R. Sharpe, Kähler cone substructure, Adv. Theor. Math. Phys. 2 (1999) 1441 [hep-th/9810064] [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    M.F. Atiyah, Complex analytic connections in fibre bundles, Trans. AMS 85 (1957) 181.MathSciNetCrossRefGoogle Scholar
  45. [45]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The Atiyah Class and Complex Structure Stabilization in Heterotic Calabi-Yau Compactifications, JHEP 10 (2011) 032 [arXiv:1107.5076] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and c-extremization, Phys. Rev. Lett. 110 (2013) 061601 [arXiv:1211.4030] [INSPIRE].
  47. [47]
    J. Distler, B.R. Greene and D.R. Morrison, Resolving singularities in (0,2) models, Nucl. Phys. B 481 (1996) 289 [hep-th/9605222] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    P.S. Aspinwall and B.R. Greene, On the geometric interpretation of N = 2 superconformal theories, Nucl. Phys. B 437 (1995) 205 [hep-th/9409110] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    J. McOrist and I.V. Melnikov, Half-Twisted Correlators from the Coulomb Branch, JHEP 04 (2008) 071 [arXiv:0712.3272] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    M. Kreuzer, J. McOrist, I.V. Melnikov and M.R. Plesser, (0,2) Deformations of Linear σ-models, JHEP 07 (2011) 044 [arXiv:1001.2104] [INSPIRE].
  51. [51]
    J. McOrist and I.V. Melnikov, Old issues and linear σ-models, Adv. Theor. Math. Phys. 16 (2012) 251 [arXiv:1103.1322] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  52. [52]
    P.S. Aspinwall and M.R. Plesser, Elusive Worldsheet Instantons in Heterotic String Compactifications, Proc. Symp. Pure Math. 85 (2012) 33 [arXiv:1106.2998] [INSPIRE].MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Kavli Institute for the Physics and Mathematics of the Universe (WPI)The University of TokyoKashiwaJapan
  2. 2.Center for Geometry and Theoretical PhysicsDuke UniversityDurhamU.S.A.

Personalised recommendations