Advertisement

Journal of High Energy Physics

, 2018:66 | Cite as

Wilson lines and Ishibashi states in AdS3/CFT2

  • Alejandra Castro
  • Nabil Iqbal
  • Eva Llabrés
Open Access
Regular Article - Theoretical Physics
  • 12 Downloads

Abstract

We provide a refined interpretation of a gravitational Wilson line in AdS3 in terms of Ishibashi states in the dual CFT2. Our strategy is to give a method to evaluate the Wilson line that accounts for all the information contained in the representation, and clarify the role of boundary conditions at the endpoints of the line operator. This gives a novel way to explore and reconstruct the local bulk dynamics which we discuss. We also compare our findings with other interpretations of Ishibashi states in AdS3/CFT2.

Keywords

AdS-CFT Correspondence Chern-Simons Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Achucarro and P.K. Townsend, A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B 311 (1988) 46 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    M. Henneaux, L. Maoz and A. Schwimmer, Asymptotic dynamics and asymptotic symmetries of three-dimensional extended AdS supergravity, Annals Phys. 282 (2000) 31 [hep-th/9910013] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    C. Aragone and S. Deser, Hypersymmetry in D = 3 of coupled gravity massless spin 5/2 system, Class. Quant. Grav. 1 (1984) L9 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    M.P. Blencowe, A consistent interacting massless higher spin field theory in D = (2 + 1), Class. Quant. Grav. 6 (1989) 443 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    E. Bergshoeff, M.P. Blencowe and K.S. Stelle, Area preserving diffeomorphisms and higher spin algebra, Commun. Math. Phys. 128 (1990) 213 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    M. Henneaux and S.-J. Rey, Nonlinear W as asymptotic symmetry of three-dimensional higher spin anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    G. Grignani and G. Nardelli, Gravity and the Poincaré group, Phys. Rev. D 45 (1992) 2719 [INSPIRE].ADSzbMATHGoogle Scholar
  10. [10]
    M. Ammon, A. Castro and N. Iqbal, Wilson lines and entanglement entropy in higher spin gravity, JHEP 10 (2013) 110 [arXiv:1306.4338] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    J. de Boer and J.I. Jottar, Entanglement entropy and higher spin holography in AdS 3, JHEP 04 (2014) 089 [arXiv:1306.4347] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    A. Castro and E. Llabrés, Unravelling holographic entanglement entropy in higher spin theories, JHEP 03 (2015) 124 [arXiv:1410.2870] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  13. [13]
    J. de Boer, A. Castro, E. Hijano, J.I. Jottar and P. Kraus, Higher spin entanglement and W N conformal blocks, JHEP 07 (2015) 168 [arXiv:1412.7520] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Hegde, P. Kraus and E. Perlmutter, General results for higher spin Wilson lines and entanglement in Vasiliev theory, JHEP 01 (2016) 176 [arXiv:1511.05555] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    A. Castro, S. Detournay, N. Iqbal and E. Perlmutter, Holographic entanglement entropy and gravitational anomalies, JHEP 07 (2014) 114 [arXiv:1405.2792] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Castro, D.M. Hofman and N. Iqbal, Entanglement entropy in warped conformal field theories, JHEP 02 (2016) 033 [arXiv:1511.00707] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    N. Ishibashi, The boundary and crosscap states in conformal field theories, Mod. Phys. Lett. A 4 (1989) 251 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    J.L. Cardy, Boundary conformal field theory, hep-th/0411189 [INSPIRE].
  19. [19]
    D.E. Berenstein, R. Corrado, W. Fischler and J.M. Maldacena, The operator product expansion for Wilson loops and surfaces in the large N limit, Phys. Rev. D 59 (1999) 105023 [hep-th/9809188] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Vacua, propagators and holographic probes in AdS/CFT, JHEP 01 (1999) 002 [hep-th/9812007] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, Continuous multiscale entanglement renormalization ansatz as holographic surface-state correspondence, Phys. Rev. Lett. 115 (2015) 171602 [arXiv:1506.01353] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    H. Verlinde, Poking holes in AdS/CFT: bulk fields from boundary states, arXiv:1505.05069 [INSPIRE].
  24. [24]
    Y. Nakayama and H. Ooguri, Bulk locality and boundary creating operators, JHEP 10 (2015) 114 [arXiv:1507.04130] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    V. Balasubramanian, P. Kraus and A.E. Lawrence, Bulk versus boundary dynamics in anti-de Sitter space-time, Phys. Rev. D 59 (1999) 046003 [hep-th/9805171] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J.S.F. Chan and R.B. Mann, Scalar wave falloff in asymptotically anti-de Sitter backgrounds, Phys. Rev. D 55 (1997) 7546 [gr-qc/9612026] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    D. Birmingham, Choptuik scaling and quasinormal modes in the AdS/CFT correspondence, Phys. Rev. D 64 (2001) 064024 [hep-th/0101194] [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    V. Cardoso and J.P.S. Lemos, Scalar, electromagnetic and Weyl perturbations of BTZ black holes: quasinormal modes, Phys. Rev. D 63 (2001) 124015 [gr-qc/0101052] [INSPIRE].
  30. [30]
    D. Birmingham, I. Sachs and S.N. Solodukhin, Conformal field theory interpretation of black hole quasinormal modes, Phys. Rev. Lett. 88 (2002) 151301 [hep-th/0112055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    B. Chen and J. Long, Hidden conformal symmetry and quasi-normal modes, Phys. Rev. D 82 (2010) 126013 [arXiv:1009.1010] [INSPIRE].ADSGoogle Scholar
  32. [32]
    H.-B. Zhang, SL(2, R) symmetry and quasi-normal modes in the BTZ black hole, JHEP 03 (2011) 009 [arXiv:1102.4721] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    M. Bañados, Agujero negro en tres dimensiones (in Spanish), Ph.D. thesis, Universidad de Chile, Chile, (1993).Google Scholar
  34. [34]
    M. Gutperle and P. Kraus, Higher spin black holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local bulk operators, Phys. Rev. D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: a boundary view of horizons and locality, Phys. Rev. D 73 (2006) 086003 [hep-th/0506118] [INSPIRE].ADSGoogle Scholar
  37. [37]
    Y. Nakayama and H. Ooguri, Bulk local states and crosscaps in holographic CFT, JHEP 10 (2016) 085 [arXiv:1605.00334] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    A. Lewkowycz, G.J. Turiaci and H. Verlinde, A CFT perspective on gravitational dressing and bulk locality, JHEP 01 (2017) 004 [arXiv:1608.08977] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    K. Goto and T. Takayanagi, CFT descriptions of bulk local states in the AdS black holes, JHEP 10 (2017) 153 [arXiv:1704.00053] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    N. Anand, H. Chen, A.L. Fitzpatrick, J. Kaplan and D. Li, An exact operator that knows its location, JHEP 02 (2018) 012 [arXiv:1708.04246] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: a holographic description of the black hole interior, Phys. Rev. D 75 (2007) 106001 [Erratum ibid. D 75 (2007) 129902] [hep-th/0612053] [INSPIRE].
  42. [42]
    K. Papadodimas and S. Raju, Black hole interior in the holographic correspondence and the information paradox, Phys. Rev. Lett. 112 (2014) 051301 [arXiv:1310.6334] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Guica and D.L. Jafferis, On the construction of charged operators inside an eternal black hole, SciPost Phys. 3 (2017) 016 [arXiv:1511.05627] [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    B. Carneiro da Cunha and M. Guica, Exploring the BTZ bulk with boundary conformal blocks, arXiv:1604.07383 [INSPIRE].
  45. [45]
    S. Giombi, A. Maloney and X. Yin, One-loop partition functions of 3D gravity, JHEP 08 (2008) 007 [arXiv:0804.1773] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    H.L. Verlinde, Conformal field theory, 2D quantum gravity and quantization of Teichmüller space, Nucl. Phys. B 337 (1990) 652 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys. B 326 (1989) 108 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    K.B. Alkalaev and V.A. Belavin, Classical conformal blocks via AdS/CFT correspondence, JHEP 08 (2015) 049 [arXiv:1504.05943] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Semiclassical Virasoro blocks from AdS 3 gravity, JHEP 12 (2015) 077 [arXiv:1508.04987] [INSPIRE].ADSzbMATHGoogle Scholar
  51. [51]
    A. Bhatta, P. Raman and N.V. Suryanarayana, Holographic conformal partial waves as gravitational open Wilson networks, JHEP 06 (2016) 119 [arXiv:1602.02962] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    K.B. Alkalaev and V.A. Belavin, Monodromic vs geodesic computation of Virasoro classical conformal blocks, Nucl. Phys. B 904 (2016) 367 [arXiv:1510.06685] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    M. Besken, A. Hegde, E. Hijano and P. Kraus, Holographic conformal blocks from interacting Wilson lines, JHEP 08 (2016) 099 [arXiv:1603.07317] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, Exact Virasoro blocks from Wilson lines and background-independent operators, JHEP 07 (2017) 092 [arXiv:1612.06385] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    R. Nakayama and T. Suzuki, A bulk localized state and new holographic renormalization group flow in 3D spin-3 gravity, Int. J. Mod. Phys. A 33 (2018) 1850061 [arXiv:1712.04678] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    P. Kessel and J. Raeymaekers, Simple unfolded equations for massive higher spins in AdS 3, JHEP 08 (2018) 076 [arXiv:1805.07279] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Bañados, Three-dimensional quantum geometry and black holes, AIP Conf. Proc. 484 (1999) 147 [hep-th/9901148] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Black holes in three dimensional higher spin gravity: a review, J. Phys. A 46 (2013) 214001 [arXiv:1208.5182] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  59. [59]
    H. Srivastava and H. Manocha, A treatise on generating functions, Ellis Horwood limited, Chichester, U.K., (1984).zbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Centre for Particle Theory, Department of Mathematical SciencesDurham UniversityDurhamU.K.

Personalised recommendations