Advertisement

Journal of High Energy Physics

, 2018:55 | Cite as

From underlying event sensitive to insensitive: factorization and resummation

  • Daekyoung Kang
  • Yiannis MakrisEmail author
  • Thomas Mehen
Open Access
Regular Article - Theoretical Physics

Abstract

In this paper we study the transverse energy spectrum for the Drell-Yan process. The transverse energy is measured within the central region defined by a (pseudo-) rapidity cutoff. Soft-collinear effective theory (SCET) is used to factorize the cross section and resum large logarithms of the rapidity cutoff and ratios of widely separated scales that appear in the fixed order result. We develop a framework which can smoothly interpolate between various regions of the spectrum and eventually match onto the fixed order result. This way a reliable calculation is obtained for the contribution of the initial state radiation to the measurement. By comparing our result for Drell-Yan against Pythia we obtain a simple model that describes the contribution from multiparton interactions (MPI). A model with little or no dependence on the primary process gives results in agreement with the simulation. Based on this observation we propose MPI insensitive measurements. These observables are insensitive to the MPI contributions as implemented in Pythia and we compare against the purely perturbative result obtained with the standard collinear factorization.

Keywords

Jets Phenomenological Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    CMS collaboration, Measurement of the underlying event using the Drell-Yan process in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-FSQ-16-008 (2016).
  2. [2]
    CMS collaboration, Measurement of the underlying event in the Drell-Yan process in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 72 (2012) 2080 [arXiv:1204.1411] [INSPIRE].
  3. [3]
    ATLAS collaboration, Measurement of event-shape observables in Z + events in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Eur. Phys. J. C 76 (2016) 375 [arXiv:1602.08980] [INSPIRE].
  4. [4]
    ATLAS collaboration, Measurement of charged-particle distributions sensitive to the underlying event in \( \sqrt{s}=13 \) TeV proton-proton collisions with the ATLAS detector at the LHC, JHEP 03 (2017) 157 [arXiv:1701.05390] [INSPIRE].
  5. [5]
    ATLAS collaboration, Measurement of the underlying event in jet events from 7 TeV proton-proton collisions with the ATLAS detector, Eur. Phys. J. C 74 (2014) 2965 [arXiv:1406.0392] [INSPIRE].
  6. [6]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: From PDFs to Initial State Jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].
  7. [7]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The Beam Thrust Cross Section for Drell-Yan at NNLL Order, Phys. Rev. Lett. 106 (2011) 032001 [arXiv:1005.4060] [INSPIRE].
  8. [8]
    C.F. Berger, C. Marcantonini, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Higgs Production with a Central Jet Veto at NNLL+NNLO, JHEP 04 (2011) 092 [arXiv:1012.4480] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Banfi, G.P. Salam and G. Zanderighi, Phenomenology of event shapes at hadron colliders, JHEP 06 (2010) 038 [arXiv:1001.4082] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    I.Z. Rothstein and I.W. Stewart, An Effective Field Theory for Forward Scattering and Factorization Violation, JHEP 08 (2016) 025 [arXiv:1601.04695] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    J.R. Gaunt, Glauber Gluons and Multiple Parton Interactions, JHEP 07 (2014) 110 [arXiv:1405.2080] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Zeng, Drell-Yan process with jet vetoes: breaking of generalized factorization, JHEP 10 (2015) 189 [arXiv:1507.01652] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Papaefstathiou, J.M. Smillie and B.R. Webber, Resummation of transverse energy in vector boson and Higgs boson production at hadron colliders, JHEP 04 (2010) 084 [arXiv:1002.4375] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    M. Grazzini, A. Papaefstathiou, J.M. Smillie and B.R. Webber, Resummation of the transverse-energy distribution in Higgs boson production at the Large Hadron Collider, JHEP 09 (2014) 056 [arXiv:1403.3394] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Hornig, D. Kang, Y. Makris and T. Mehen, Transverse Vetoes with Rapidity Cutoff in SCET, JHEP 12 (2017) 043 [arXiv:1708.08467] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in BX s γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].
  17. [17]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
  18. [18]
    C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].
  19. [19]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
  20. [20]
    F.J. Tackmann, J.R. Walsh and S. Zuberi, Resummation Properties of Jet Vetoes at the LHC, Phys. Rev. D 86 (2012) 053011 [arXiv:1206.4312] [INSPIRE].
  21. [21]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The Quark Beam Function at NNLL, JHEP 09 (2010) 005 [arXiv:1002.2213] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    S. Fleming, A.K. Leibovich and T. Mehen, Resummation of Large Endpoint Corrections to Color-Octet J/ψ Photoproduction, Phys. Rev. D 74 (2006) 114004 [hep-ph/0607121] [INSPIRE].
  23. [23]
    J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A Formalism for the Systematic Treatment of Rapidity Logarithms in Quantum Field Theory, JHEP 05 (2012) 084 [arXiv:1202.0814] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    J.-y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The Rapidity Renormalization Group, Phys. Rev. Lett. 108 (2012) 151601 [arXiv:1104.0881] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Y.-T. Chien, A. Hornig and C. Lee, Soft-collinear mode for jet cross sections in soft collinear effective theory, Phys. Rev. D 93 (2016) 014033 [arXiv:1509.04287] [INSPIRE].
  26. [26]
    C.W. Bauer, F.J. Tackmann, J.R. Walsh and S. Zuberi, Factorization and Resummation for Dijet Invariant Mass Spectra, Phys. Rev. D 85 (2012) 074006 [arXiv:1106.6047] [INSPIRE].
  27. [27]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  29. [29]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
  30. [30]
    G.P. Korchemsky and S. Tafat, On power corrections to the event shape distributions in QCD, JHEP 10 (2000) 010 [hep-ph/0007005] [INSPIRE].
  31. [31]
    C.W. Bauer, A.V. Manohar and M.B. Wise, Enhanced nonperturbative effects in jet distributions, Phys. Rev. Lett. 91 (2003) 122001 [hep-ph/0212255] [INSPIRE].
  32. [32]
    C. Lee and G.F. Sterman, Universality of nonperturbative effects in event shapes, eConf C 0601121 (2006) A001 [hep-ph/0603066] [INSPIRE].
  33. [33]
    C. Lee, Universal nonperturbative effects in event shapes from soft-collinear effective theory, Mod. Phys. Lett. A 22 (2007) 835 [hep-ph/0703030] [INSPIRE].
  34. [34]
    A. Hornig, C. Lee and G. Ovanesyan, Effective Predictions of Event Shapes: Factorized, Resummed and Gapped Angularity Distributions, JHEP 05 (2009) 122 [arXiv:0901.3780] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    Z.-B. Kang, X. Liu and S. Mantry, 1-jettiness DIS event shape: NNLL+NLO results, Phys. Rev. D 90 (2014) 014041 [arXiv:1312.0301] [INSPIRE].
  36. [36]
    Z.-B. Kang, K. Lee and F. Ringer, Jet angularity measurements for single inclusive jet production, JHEP 04 (2018) 110 [arXiv:1801.00790] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    I. Moult, B. Nachman and D. Neill, Convolved Substructure: Analytically Decorrelating Jet Substructure Observables, JHEP 05 (2018) 002 [arXiv:1710.06859] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Dissecting Soft Radiation with Factorization, Phys. Rev. Lett. 114 (2015) 092001 [arXiv:1405.6722] [INSPIRE].
  39. [39]
    T. Becher and G. Bell, Enhanced nonperturbative effects through the collinear anomaly, Phys. Rev. Lett. 112 (2014) 182002 [arXiv:1312.5327] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A.H. Hoang, S. Mantry, A. Pathak and I.W. Stewart, Extracting a Short Distance Top Mass with Light Grooming, arXiv:1708.02586 [INSPIRE].
  41. [41]
    Z.-B. Kang, K. Lee, X. Liu and F. Ringer, The groomed and ungroomed jet mass distribution for inclusive jet production at the LHC, arXiv:1803.03645 [INSPIRE].
  42. [42]
    M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].
  43. [43]
    M. Ritzmann and W.J. Waalewijn, Fragmentation in Jets at NNLO, Phys. Rev. D 90 (2014) 054029 [arXiv:1407.3272] [INSPIRE].
  44. [44]
    G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].
  45. [45]
    D.J. Gross and F. Wilczek, Asymptotically free gauge theories. ii, Phys. Rev. D 9 (1974) 980.Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern PhysicsFudan UniversityShanghaiChina
  2. 2.Theoretical Division T-2, Los Alamos National LaboratoryLos AlamosU.S.A.
  3. 3.Department of PhysicsDuke UniversityDurhamU.K.

Personalised recommendations