Journal of High Energy Physics

, 2018:47 | Cite as

Controlled flavor violation in the MSSM from a unified Δ(27) flavor symmetry

  • Ivo de Medeiros Varzielas
  • M. L. López-Ibáñez
  • Aurora Melis
  • Oscar Vives
Open Access
Regular Article - Theoretical Physics


We study the phenomenology of a unified supersymmetric theory with a flavor symmetry Δ(27). The model accommodates quark and lepton masses, mixing angles and CP phases. In this model, the Dirac and Majorana mass matrices have a unified texture zero structure in the (1, 1) entry that leads to the Gatto-Sartori-Tonin relation between the Cabibbo angle and ratios of the masses in the quark sectors, and to a natural departure from zero of the θ 13 angle in the lepton sector. We derive the flavor structures of the trilinears and soft mass matrices, and show their general non-universality. This causes large flavor violating effects. As a consequence, the parameter space for this model is constrained, allowing it to be (dis)proven by flavor violation searches in the next decade. Although the results are model specific, we compare them to previous studies to show similar flavor effects (and associated constraints) are expected in general in supersymmetric flavor models, and may be used to distinguish them.


Beyond Standard Model Supersymmetric Standard Model Quark Masses and SM Parameters 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    D. Das, M.L. López-Ibáñez, M.J. Pérez and O. Vives, Effective theories of flavor and the nonuniversal MSSM, Phys. Rev. D 95 (2017) 035001 [arXiv:1607.06827] [INSPIRE].ADSGoogle Scholar
  2. [2]
    M.L. López-Ibáñez, A. Melis, M.J. Pérez and O. Vives, Slepton non-universality in the flavor-effective MSSM, JHEP 11 (2017) 162 [Erratum JHEP 04 (2018) 015] [arXiv:1710.02593] [INSPIRE].
  3. [3]
    I. de Medeiros Varzielas, G.G. Ross and J. Talbert, A Unified Model of Quarks and Leptons with a Universal Texture Zero, JHEP 03 (2018) 007 [arXiv:1710.01741] [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    C.H. Albright, A. Dueck and W. Rodejohann, Possible Alternatives to Tri-bimaximal Mixing, Eur. Phys. J. C 70 (2010) 1099 [arXiv:1004.2798] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    I. de Medeiros Varzielas and L. Lavoura, Flavour models for TM 1 lepton mixing, J. Phys. G 40 (2013) 085002 [arXiv:1212.3247] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    I. de Medeiros Varzielas, S.F. King and G.G. Ross, Neutrino tri-bi-maximal mixing from a non-Abelian discrete family symmetry, Phys. Lett. B 648 (2007) 201 [hep-ph/0607045] [INSPIRE].
  7. [7]
    F. Bazzocchi and I. de Medeiros Varzielas, Tri-bi-maximal mixing in viable family symmetry unified model with extended seesaw, Phys. Rev. D 79 (2009) 093001 [arXiv:0902.3250] [INSPIRE].ADSGoogle Scholar
  8. [8]
    R. Howl and S.F. King, Solving the Flavour Problem in Supersymmetric Standard Models with Three Higgs Families, Phys. Lett. B 687 (2010) 355 [arXiv:0908.2067] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    I. de Medeiros Varzielas and G.G. Ross, Discrete family symmetry, Higgs mediators and θ 13, JHEP 12 (2012) 041 [arXiv:1203.6636] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete Δ(27) × SO(10) SUSY GUT, Phys. Rev. D 94 (2016) 016006 [arXiv:1512.00850] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Leptogenesis in a Δ(27) × SO(10) SUSY GUT, JHEP 01 (2017) 077 [arXiv:1609.05837] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A.E. Cárcamo Hernández, S. Kovalenko, J.W.F. Valle and C.A. Vaquera-Araujo, Predictive Pati-Salam theory of fermion masses and mixing, JHEP 07 (2017) 118 [arXiv:1705.06320] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    I. de Medeiros Varzielas and G.G. Ross, SU(3) family symmetry and neutrino bi-tri-maximal mixing, Nucl. Phys. B 733 (2006) 31 [hep-ph/0507176] [INSPIRE].
  14. [14]
    L. Calibbi and G. Signorelli, Charged Lepton Flavour Violation: An Experimental and Theoretical Introduction, Riv. Nuovo Cim. 41 (2018) 1 [arXiv:1709.00294] [INSPIRE].Google Scholar
  15. [15]
    G. Cavoto, A. Papa, F. Renga, E. Ripiccini and C. Voena, The quest for μeγ and its experimental limiting factors at future high intensity muon beams, Eur. Phys. J. C 78 (2018) 37 [arXiv:1707.01805] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    MEG collaboration, A.M. Baldini et al., Search for the lepton flavour violating decay μ +e + γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].
  17. [17]
    MEG II collaboration, A.M. Baldini et al., The design of the MEG II experiment, Eur. Phys. J. C 78 (2018) 380 [arXiv:1801.04688] [INSPIRE].
  18. [18]
    SINDRUM collaboration, U. Bellgardt et al., Search for the Decay μ +e + e + e , Nucl. Phys. B 299 (1988) 1 [INSPIRE].
  19. [19]
    A. Blondel et al., Research Proposal for an Experiment to Search for the Decay μeee, arXiv:1301.6113 [INSPIRE].
  20. [20]
    Mu2e collaboration, L. Bartoszek et al., Mu2e Technical Design Report, arXiv:1501.05241 [INSPIRE].
  21. [21]
    BaBar collaboration, B. Aubert et al., Searches for Lepton Flavor Violation in the Decays τ ±e ± γ and τ ±μ ± γ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381] [INSPIRE].
  22. [22]
    T. Aushev et al., Physics at Super B Factory, arXiv:1002.5012 [INSPIRE].
  23. [23]
    Belle collaboration, Y. Miyazaki et al., Search for Lepton-Flavor-Violating τ Decays into a Lepton and a Vector Meson, Phys. Lett. B 699 (2011) 251 [arXiv:1101.0755] [INSPIRE].
  24. [24]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  25. [25]
    J.A. Casas and S. Dimopoulos, Stability bounds on flavor violating trilinear soft terms in the MSSM, Phys. Lett. B 387 (1996) 107 [hep-ph/9606237] [INSPIRE].
  26. [26]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].
  27. [27]
    F. Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    P. Paradisi, Constraints on SUSY lepton flavor violation by rare processes, JHEP 10 (2005) 006 [hep-ph/0505046] [INSPIRE].
  29. [29]
    J. Brod and M. Gorbahn, Next-to-Next-to-Leading-Order Charm-Quark Contribution to the CP-violation Parameter ϵ K and ΔM K, Phys. Rev. Lett. 108 (2012) 121801 [arXiv:1108.2036] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Ciuchini et al., ΔM K and ϵ K in SUSY at the next-to-leading order, JHEP 10 (1998) 008 [hep-ph/9808328] [INSPIRE].
  31. [31]
    Y. Nir and N. Seiberg, Should squarks be degenerate?, Phys. Lett. B 309 (1993) 337 [hep-ph/9304307] [INSPIRE].
  32. [32]
    M. Dine, R.G. Leigh and A. Kagan, Flavor symmetries and the problem of squark degeneracy, Phys. Rev. D 48 (1993) 4269 [hep-ph/9304299] [INSPIRE].
  33. [33]
    M. Leurer, Y. Nir and N. Seiberg, Mass matrix models: The Sequel, Nucl. Phys. B 420 (1994) 468 [hep-ph/9310320] [INSPIRE].
  34. [34]
    A. Pomarol and D. Tommasini, Horizontal symmetries for the supersymmetric flavor problem, Nucl. Phys. B 466 (1996) 3 [hep-ph/9507462] [INSPIRE].
  35. [35]
    R. Barbieri, G.R. Dvali and L.J. Hall, Predictions from a U(2) flavor symmetry in supersymmetric theories, Phys. Lett. B 377 (1996) 76 [hep-ph/9512388] [INSPIRE].
  36. [36]
    Y. Nir and R. Rattazzi, Solving the supersymmetric CP problem with Abelian horizontal symmetries, Phys. Lett. B 382 (1996) 363 [hep-ph/9603233] [INSPIRE].
  37. [37]
    E. Dudas, C. Grojean, S. Pokorski and C.A. Savoy, Abelian flavor symmetries in supersymmetric models, Nucl. Phys. B 481 (1996) 85 [hep-ph/9606383] [INSPIRE].
  38. [38]
    R. Barbieri, L.J. Hall, S. Raby and A. Romanino, Unified theories with U(2) flavor symmetry, Nucl. Phys. B 493 (1997) 3 [hep-ph/9610449] [INSPIRE].
  39. [39]
    Y. Nir and G. Raz, Quark squark alignment revisited, Phys. Rev. D 66 (2002) 035007 [hep-ph/0206064] [INSPIRE].
  40. [40]
    G.G. Ross, L. Velasco-Sevilla and O. Vives, Spontaneous CP-violation and nonAbelian family symmetry in SUSY, Nucl. Phys. B 692 (2004) 50 [hep-ph/0401064] [INSPIRE].
  41. [41]
    S. Antusch, S.F. King, M. Malinsky and G.G. Ross, Solving the SUSY Flavour and CP Problems with Non-Abelian Family Symmetry and Supergravity, Phys. Lett. B 670 (2009) 383 [arXiv:0807.5047] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    Y. Nomura and D. Stolarski, Naturally Flavorful Supersymmetry at the LHC, Phys. Rev. D 78 (2008) 095011 [arXiv:0808.1380] [INSPIRE].ADSGoogle Scholar
  43. [43]
    L. Calibbi, J. Jones-Perez, A. Masiero, J.-h. Park, W. Porod and O. Vives, FCNC and CP-violation Observables in a SU(3)-flavoured MSSM, Nucl. Phys. B 831 (2010) 26 [arXiv:0907.4069] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    L. Calibbi, J. Jones-Perez, A. Masiero, J.-h. Park, W. Porod and O. Vives, SU(3) Flavour Symmetries and CP violation, PoS(EPS-HEP 2009)167 [arXiv:0909.2501] [INSPIRE].
  45. [45]
    W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub, Anatomy and Phenomenology of FCNC and CPV Effects in SUSY Theories, Nucl. Phys. B 830 (2010) 17 [arXiv:0909.1333] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    Z. Lalak, S. Pokorski and G.G. Ross, Beyond MFV in family symmetry theories of fermion masses, JHEP 08 (2010) 129 [arXiv:1006.2375] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    K.S. Babu, K. Kawashima and J. Kubo, Variations on the Supersymmetric Q 6 Model of Flavor, Phys. Rev. D 83 (2011) 095008 [arXiv:1103.1664] [INSPIRE].ADSGoogle Scholar
  48. [48]
    S. Antusch, L. Calibbi, V. Maurer and M. Spinrath, From Flavour to SUSY Flavour Models, Nucl. Phys. B 852 (2011) 108 [arXiv:1104.3040] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  49. [49]
    L. Calibbi, Z. Lalak, S. Pokorski and R. Ziegler, The Messenger Sector of SUSY Flavour Models and Radiative Breaking of Flavour Universality, JHEP 06 (2012) 018 [arXiv:1203.1489] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    K.S. Babu, I. Gogoladze, S. Raza and Q. Shafi, Flavor Symmetry Based MSSM (sMSSM): Theoretical Models and Phenomenological Analysis, Phys. Rev. D 90 (2014) 056001 [arXiv:1406.6078] [INSPIRE].ADSGoogle Scholar
  51. [51]
    J.R. Espinosa and A. Ibarra, Flavor symmetries and Kähler operators, JHEP 08 (2004) 010 [hep-ph/0405095] [INSPIRE].
  52. [52]
    S.F. King, I.N.R. Peddie, G.G. Ross, L. Velasco-Sevilla and O. Vives, Kähler corrections and softly broken family symmetries, JHEP 07 (2005) 049 [hep-ph/0407012] [INSPIRE].
  53. [53]
    S. Antusch, S.F. King and M. Malinsky, Third Family Corrections to Quark and Lepton Mixing in SUSY Models with non-Abelian Family Symmetry, JHEP 05 (2008) 066 [arXiv:0712.3759] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    D. Binosi and L. Theussl, JaxoDraw: A Graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun. 161 (2004) 76 [hep-ph/0309015] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Ivo de Medeiros Varzielas
    • 1
  • M. L. López-Ibáñez
    • 2
    • 3
  • Aurora Melis
    • 2
  • Oscar Vives
    • 2
  1. 1.CFTP, Departamento de Física, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  2. 2.Departament de Física Tèorica, Universitat de València and IFIC, Universitat de València-CSICValènciaSpain
  3. 3.Dipartimento di Matematica e Fisica, Università di Roma Tre and INFN, Sezione di Roma IIIRomeItaly

Personalised recommendations