Advertisement

Journal of High Energy Physics

, 2018:44 | Cite as

Ghost-free infinite derivative gravity

  • Brage GordingEmail author
  • Angnis Schmidt-May
Open Access
Regular Article - Theoretical Physics

Abstract

We present the construction of a gravitational action including an infinite series of higher derivative terms. The outcome is a classically consistent completion of a well-studied quadratic curvature theory. The closed form for the full action is ghost-free bimetric theory, describing the interactions of a massive and a massless spin-2 field. At energies much smaller than the spin-2 mass scale, the theory reduces to general relativity. For energies comparable to the spin-2 mass, the higher derivative terms completing the Einstein-Hilbert action capture the effects of the additional massive spin-2 field. The theory is only ghost-free when the full series of higher derivatives is kept.

Keywords

Classical Theories of Gravity Models of Quantum Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Ann. Inst. H. Poincaré Phys. Theor. A 20 (1974) 69 [INSPIRE].
  2. [2]
    M.D. Freeman, C.N. Pope, M.F. Sohnius and K.S. Stelle, Higher Order σ Model Counterterms and the Effective Action for Superstrings, Phys. Lett. B 178 (1986) 199 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    M.T. Grisaru and D. Zanon, σ Model Superstring Corrections to the Einstein-hilbert Action, Phys. Lett. B 177 (1986) 347 [INSPIRE].
  4. [4]
    D.J. Gross and E. Witten, Superstring Modifications of Einsteins Equations, Nucl. Phys. B 277 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    D.A. Eliezer and R.P. Woodard, The Problem of Nonlocality in String Theory, Nucl. Phys. B 325 (1989) 389 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    W. Siegel, Stringy gravity at short distances, hep-th/0309093 [INSPIRE].
  7. [7]
    K.S. Stelle, Classical Gravity with Higher Derivatives, Gen. Rel. Grav. 9 (1978) 353 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    M. Ostrogradsky, Mémoire sur les équations différentielles relatives au problème des isopérimétres, Mem. Ac. St. Petersbourg V 14 (1850) 385.Google Scholar
  9. [9]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive Gravity in Three Dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    N. Ohta, A Complete Classification of Higher Derivative Gravity in 3D and Criticality in 4D, Class. Quant. Grav. 29 (2012) 015002 [arXiv:1109.4458] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    A. Kleinschmidt, T. Nutma and A. Virmani, On unitary subsectors of polycritical gravities, Gen. Rel. Grav. 45 (2013) 727 [arXiv:1206.7095] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    E. Joung and K. Mkrtchyan, Higher-derivative massive actions from dimensional reduction, JHEP 02 (2013) 134 [arXiv:1212.5919] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    L. Álvarez-Gaumé, A. Kehagias, C. Kounnas, D. Lüst and A. Riotto, Aspects of Quadratic Gravity, Fortsch. Phys. 64 (2016) 176 [arXiv:1505.07657] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    S.F. Hassan and R.A. Rosen, Bimetric Gravity from Ghost-free Massive Gravity, JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    M.F. Paulos and A.J. Tolley, Massive Gravity Theories and limits of Ghost-free Bigravity models, JHEP 09 (2012) 002 [arXiv:1203.4268] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    S.F. Hassan, A. Schmidt-May and M. von Strauss, Higher Derivative Gravity and Conformal Gravity From Bimetric and Partially Massless Bimetric Theory, Universe 1 (2015) 92 [arXiv:1303.6940] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S.F. Hassan, A. Schmidt-May and M. von Strauss, Extended Weyl Invariance in a Bimetric Model and Partial Masslessness, Class. Quant. Grav. 33 (2016) 015011 [arXiv:1507.06540] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    S. Akagi, Towards construction of ghost-free higher derivative gravity from bigravity, Phys. Rev. D 97 (2018) 124001 [arXiv:1806.02045] [INSPIRE].ADSGoogle Scholar
  19. [19]
    G. Cusin, J. Fumagalli and M. Maggiore, Non-local formulation of ghost-free bigravity theory, JHEP 09 (2014) 181 [arXiv:1407.5580] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    A. Schmidt-May and M. von Strauss, Recent developments in bimetric theory, J. Phys. A 49 (2016) 183001 [arXiv:1512.00021] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  21. [21]
    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S.F. Hassan and R.A. Rosen, Resolving the Ghost Problem in non-Linear Massive Gravity, Phys. Rev. Lett. 108 (2012) 041101 [arXiv:1106.3344] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972) 3368 [INSPIRE].ADSGoogle Scholar
  24. [24]
    S.F. Hassan, A. Schmidt-May and M. von Strauss, On Consistent Theories of Massive Spin-2 Fields Coupled to Gravity, JHEP 05 (2013) 086 [arXiv:1208.1515] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    V. Baccetti, P. Martin-Moruno and M. Visser, Massive gravity from bimetric gravity, Class. Quant. Grav. 30 (2013) 015004 [arXiv:1205.2158] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    S.F. Hassan, A. Schmidt-May and M. von Strauss, Particular Solutions in Bimetric Theory and Their Implications, Int. J. Mod. Phys. D 23 (2014) 1443002 [arXiv:1407.2772] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    Y. Akrami, S.F. Hassan, F. Könnig, A. Schmidt-May and A.R. Solomon, Bimetric gravity is cosmologically viable, Phys. Lett. B 748 (2015) 37 [arXiv:1503.07521] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    E. Babichev, L. Marzola, M. Raidal, A. Schmidt-May, F. Urban, H. Veermäe et al., Heavy spin-2 Dark Matter, JCAP 09 (2016) 016 [arXiv:1607.03497] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S.F. Hassan and R.A. Rosen, On Non-Linear Actions for Massive Gravity, JHEP 07 (2011) 009 [arXiv:1103.6055] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    J.Z. Simon, Higher Derivative Lagrangians, Nonlocality, Problems and Solutions, Phys. Rev. D 41 (1990) 3720 [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    L. Parker and J.Z. Simon, Einstein equation with quantum corrections reduced to second order, Phys. Rev. D 47 (1993) 1339 [gr-qc/9211002] [INSPIRE].
  32. [32]
    T. Biswas, E. Gerwick, T. Koivisto and A. Mazumdar, Towards singularity and ghost free theories of gravity, Phys. Rev. Lett. 108 (2012) 031101 [arXiv:1110.5249] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    L. Modesto, Super-renormalizable Quantum Gravity, Phys. Rev. D 86 (2012) 044005 [arXiv:1107.2403] [INSPIRE].ADSGoogle Scholar
  34. [34]
    R. Bach, Zur Weylschen Relativittstheorie und der Weylschen Erweiterung des Krummungstensorbegriffs (in German), Math. Zeitschr. 9 (1921) 110.CrossRefzbMATHGoogle Scholar
  35. [35]
    S.F. Hassan, A. Schmidt-May and M. von Strauss, On Partially Massless Bimetric Gravity, Phys. Lett. B 726 (2013) 834 [arXiv:1208.1797] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    M. Lüben and A. Schmidt-May, Ghost-Free Completion of An Effective Matter Coupling in Bimetric Theory, Fortsch. Phys. 66 (2018) 1800031 [arXiv:1804.04671] [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    J. Oliva and S. Ray, Classification of Six Derivative Lagrangians of Gravity and Static Spherically Symmetric Solutions, Phys. Rev. D 82 (2010) 124030 [arXiv:1004.0737] [INSPIRE].ADSGoogle Scholar
  38. [38]
    O. Baldacchino and A. Schmidt-May, Structures in multiple spin-2 interactions, J. Phys. A 50 (2017) 175401 [arXiv:1604.04354] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  39. [39]
    X. Calmet, S. Capozziello and D. Pryer, Gravitational Effective Action at Second Order in Curvature and Gravitational Waves, Eur. Phys. J. C 77 (2017) 589 [arXiv:1708.08253] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Salvio, Quadratic Gravity, Front. in Phys. 6 (2018) 77 [arXiv:1804.09944] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)MunichGermany

Personalised recommendations