Advertisement

Journal of High Energy Physics

, 2018:37 | Cite as

Singlet-Doublet dark matter freeze-in: LHC displaced signatures versus cosmology

  • Lorenzo CalibbiEmail author
  • Laura Lopez-Honorez
  • Steven Lowette
  • Alberto Mariotti
Open Access
Regular Article - Theoretical Physics

Abstract

We study the Singlet-Doublet dark matter model in the regime of feeble couplings, where the dark matter abundance is obtained via the freeze-in mechanism. As a consequence of the small couplings, the heavier particles in the model are long-lived with decay length at typical scales of collider experiments. We analyse the collider signatures of the model, characterised by displaced h and Z bosons plus missing momentum, employing current LHC searches for displaced vertices and missing energy to significantly constrain the parameter space of the model. We also take into account the cosmological bounds relevant for our light dark matter candidate arising from Lyman-α forest constraints. Our analysis emphasises the interplay between displaced signatures at the LHC and cosmology for dark matter candidates whose relic abundance is obtained through the freeze-in mechanism.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  2. [2]
    J. Abdallah et al., Simplified Models for Dark Matter Searches at the LHC, Phys. Dark Univ. 9-10 (2015) 8 [arXiv:1506.03116] [INSPIRE].
  3. [3]
    D. Abercrombie et al., Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum, arXiv:1507.00966 [INSPIRE].
  4. [4]
    A. Albert et al., Recommendations of the LHC Dark Matter Working Group: Comparing LHC searches for heavy mediators of dark matter production in visible and invisible decay channels, arXiv:1703.05703 [INSPIRE].
  5. [5]
    L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    X. Chu, T. Hambye and M.H.G. Tytgat, The Four Basic Ways of Creating Dark Matter Through a Portal, JCAP 05 (2012) 034 [arXiv:1112.0493] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen and V. Vaskonen, The Dawn of FIMP Dark Matter: A Review of Models and Constraints, Int. J. Mod. Phys. A 32 (2017) 1730023 [arXiv:1706.07442] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R.T. Co, F. D’Eramo, L.J. Hall and D. Pappadopulo, Freeze-In Dark Matter with Displaced Signatures at Colliders, JCAP 12 (2015) 024 [arXiv:1506.07532] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A.G. Hessler, A. Ibarra, E. Molinaro and S. Vogl, Probing the scotogenic FIMP at the LHC, JHEP 01 (2017) 100 [arXiv:1611.09540] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    F. D’Eramo, N. Fernandez and S. Profumo, Dark Matter Freeze-in Production in Fast-Expanding Universes, JCAP 02 (2018) 046 [arXiv:1712.07453] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    G. Brooijmans et al., Les Houches 2017: Physics at TeV Colliders New Physics Working Group Report, in 10th Les Houches Workshop of Physics at TeV Colliders (PhysTeV 2017), Les Houches France (2017) [arXiv:1803.10379] [INSPIRE].
  12. [12]
    S. Chang and M.A. Luty, Displaced Dark Matter at Colliders, arXiv:0906.5013 [INSPIRE].
  13. [13]
    A. Davoli, A. De Simone, T. Jacques and V. Sanz, Displaced Vertices from Pseudo-Dirac Dark Matter, JHEP 11 (2017) 025 [arXiv:1706.08985] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    O. Buchmueller et al., Simplified Models for Displaced Dark Matter Signatures, JHEP 09 (2017) 076 [arXiv:1704.06515] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Garny, J. Heisig, B. Lülf and S. Vogl, Coannihilation without chemical equilibrium, Phys. Rev. D 96 (2017) 103521 [arXiv:1705.09292] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Ghosh, T. Mondal and B. Mukhopadhyaya, Heavy stable charged tracks as signatures of non-thermal dark matter at the LHC: a study in some non-supersymmetric scenarios, JHEP 12 (2017) 136 [arXiv:1706.06815] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Garny, J. Heisig, M. Hufnagel and B. Lülf, Top-philic dark matter within and beyond the WIMP paradigm, Phys. Rev. D 97 (2018) 075002 [arXiv:1802.00814] [INSPIRE].ADSGoogle Scholar
  18. [18]
    A. Davoli, A. De Simone, T. Jacques and A. Morandini, LHC Phenomenology of Dark Matter with a Color-Octet Partner, JHEP 07 (2018) 054 [arXiv:1803.02861] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Viel, G.D. Becker, J.S. Bolton and M.G. Haehnelt, Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α forest data, Phys. Rev. D 88 (2013) 043502 [arXiv:1306.2314] [INSPIRE].ADSGoogle Scholar
  20. [20]
    C. Yèche, N. Palanque-Delabrouille, J. Baur and H. du Mas des Bourboux, Constraints on neutrino masses from Lyman-alpha forest power spectrum with BOSS and XQ-100, JCAP 06 (2017) 047 [arXiv:1702.03314] [INSPIRE].
  21. [21]
    V. Iršič et al., New Constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-α forest data, Phys. Rev. D 96 (2017) 023522 [arXiv:1702.01764] [INSPIRE].ADSGoogle Scholar
  22. [22]
    J.S. Bullock and M. Boylan-Kolchin, Small-Scale Challenges to the ΛCDM Paradigm, Ann. Rev. Astron. Astrophys. 55 (2017) 343 [arXiv:1707.04256] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A.A. Klypin, A.V. Kravtsov, O. Valenzuela and F. Prada, Where are the missing Galactic satellites?, Astrophys. J. 522 (1999) 82 [astro-ph/9901240] [INSPIRE].
  24. [24]
    B. Moore et al., Dark matter substructure within galactic halos, Astrophys. J. 524 (1999) L19 [astro-ph/9907411] [INSPIRE].
  25. [25]
    M. Boylan-Kolchin, J.S. Bullock and M. Kaplinghat, The Milky Ways bright satellites as an apparent failure of LCDM, Mon. Not. Roy. Astron. Soc. 422 (2012) 1203 [arXiv:1111.2048].ADSCrossRefGoogle Scholar
  26. [26]
    B. Moore, T.R. Quinn, F. Governato, J. Stadel and G. Lake, Cold collapse and the core catastrophe, Mon. Not. Roy. Astron. Soc. 310 (1999) 1147 [astro-ph/9903164].
  27. [27]
    V. Springel et al., The Aquarius Project: the subhalos of galactic halos, Mon. Not. Roy. Astron. Soc. 391 (2008) 1685 [arXiv:0809.0898].ADSCrossRefGoogle Scholar
  28. [28]
    P. Bode, J.P. Ostriker and N. Turok, Halo formation in warm dark matter models, Astrophys. J. 556 (2001) 93 [astro-ph/0010389] [INSPIRE].
  29. [29]
    J. Zavala et al., The velocity function in the local environment from LCDM and LWDM constrained simulations, Astrophys. J. 700 (2009) 1779 [arXiv:0906.0585] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M.R. Lovell et al., The Haloes of Bright Satellite Galaxies in a Warm Dark Matter Universe, Mon. Not. Roy. Astron. Soc. 420 (2012) 2318 [arXiv:1104.2929].ADSCrossRefGoogle Scholar
  31. [31]
    A. Schneider, R.E. Smith, A.V. Macciò and B. Moore, Nonlinear Evolution of Cosmological Structures in Warm Dark Matter Models, Mon. Not. Roy. Astron. Soc. 424 (2012) 684 [arXiv:1112.0330].ADSCrossRefGoogle Scholar
  32. [32]
    M.R. Lovell, C.S. Frenk, V.R. Eke, A. Jenkins, L. Gao and T. Theuns, The properties of warm dark matter haloes, Mon. Not. Roy. Astron. Soc. 439 (2014) 300 [arXiv:1308.1399] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R. Kennedy, C. Frenk, S. Cole and A. Benson, Constraining the warm dark matter particle mass with Milky Way satellites, Mon. Not. Roy. Astron. Soc. 442 (2014) 2487 [arXiv:1310.7739] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M.R. Lovell et al., Addressing the too big to fail problem with baryon physics and sterile neutrino dark matter, Mon. Not. Roy. Astron. Soc. 468 (2017) 2836 [arXiv:1611.00005] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    L. Lopez-Honorez, O. Mena, S. Palomares-Ruiz and P. Villanueva-Domingo, Warm dark matter and the ionization history of the Universe, Phys. Rev. D 96 (2017) 103539 [arXiv:1703.02302] [INSPIRE].ADSGoogle Scholar
  36. [36]
    Y. Hochberg et al., Detection of sub-MeV Dark Matter with Three-Dimensional Dirac Materials, Phys. Rev. D 97 (2018) 015004 [arXiv:1708.08929] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Knapen, T. Lin, M. Pyle and K.M. Zurek, Detection of Light Dark Matter With Optical Phonons in Polar Materials, arXiv:1712.06598 [INSPIRE].
  38. [38]
    M. Heikinheimo, T. Tenkanen and K. Tuominen, Prospects for indirect detection of frozen-in dark matter, Phys. Rev. D 97 (2018) 063002 [arXiv:1801.03089] [INSPIRE].ADSGoogle Scholar
  39. [39]
    N. Bernal, C. Cosme and T. Tenkanen, Phenomenology of Self-Interacting Dark Matter in a Matter-Dominated Universe, arXiv:1803.08064 [INSPIRE].
  40. [40]
    K. Ishiwata, T. Ito and T. Moroi, Long-Lived Unstable Superparticles at the LHC, Phys. Lett. B 669 (2008) 28 [arXiv:0807.0975] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    R. Mahbubani and L. Senatore, The Minimal model for dark matter and unification, Phys. Rev. D 73 (2006) 043510 [hep-ph/0510064] [INSPIRE].
  42. [42]
    F. D’Eramo, Dark matter and Higgs boson physics, Phys. Rev. D 76 (2007) 083522 [arXiv:0705.4493] [INSPIRE].ADSGoogle Scholar
  43. [43]
    R. Enberg, P.J. Fox, L.J. Hall, A.Y. Papaioannou and M. Papucci, LHC and dark matter signals of improved naturalness, JHEP 11 (2007) 014 [arXiv:0706.0918] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    T. Cohen, J. Kearney, A. Pierce and D. Tucker-Smith, Singlet-Doublet Dark Matter, Phys. Rev. D 85 (2012) 075003 [arXiv:1109.2604] [INSPIRE].ADSGoogle Scholar
  45. [45]
    C. Cheung and D. Sanford, Simplified Models of Mixed Dark Matter, JCAP 02 (2014) 011 [arXiv:1311.5896] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    T. Abe, R. Kitano and R. Sato, Discrimination of dark matter models in future experiments, Phys. Rev. D 91 (2015) 095004 [arXiv:1411.1335] [INSPIRE].ADSGoogle Scholar
  47. [47]
    L. Calibbi, A. Mariotti and P. Tziveloglou, Singlet-Doublet Model: Dark matter searches and LHC constraints, JHEP 10 (2015) 116 [arXiv:1505.03867] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Freitas, S. Westhoff and J. Zupan, Integrating in the Higgs Portal to Fermion Dark Matter, JHEP 09 (2015) 015 [arXiv:1506.04149] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    D. Egana-Ugrinovic, The minimal fermionic model of electroweak baryogenesis, JHEP 12 (2017) 064 [arXiv:1707.02306] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  50. [50]
    L. Lopez-Honorez, M.H.G. Tytgat, P. Tziveloglou and B. Zaldivar, On Minimal Dark Matter coupled to the Higgs, JHEP 04 (2018) 011 [arXiv:1711.08619] [INSPIRE].CrossRefzbMATHGoogle Scholar
  51. [51]
    S. Esch, M. Klasen and C.E. Yaguna, A singlet doublet dark matter model with radiative neutrino masses, arXiv:1804.03384 [INSPIRE].
  52. [52]
    G. Arcadi, 2HDM portal for Singlet-Doublet Dark Matter, arXiv:1804.04930 [INSPIRE].
  53. [53]
    ATLAS collaboration, Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, Phys. Rev. D 97 (2018) 052012 [arXiv:1710.04901] [INSPIRE].
  54. [54]
    M. Cirelli and A. Strumia, Minimal Dark Matter: Model and results, New J. Phys. 11 (2009) 105005 [arXiv:0903.3381] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    D. Egana-Ugrinovic, M. Low and J.T. Ruderman, Charged Fermions Below 100 GeV, JHEP 05 (2018) 012 [arXiv:1801.05432] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    S.D. Thomas and J.D. Wells, Phenomenology of Massive Vectorlike Doublet Leptons, Phys. Rev. Lett. 81 (1998) 34 [hep-ph/9804359] [INSPIRE].
  57. [57]
    ATLAS collaboration, Search for long-lived charginos based on a disappearing-track signature in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 06 (2018) 022 [arXiv:1712.02118] [INSPIRE].
  58. [58]
    ATLAS collaboration, Search for direct pair production of higgsinos by the reinterpretation of the disappearing track analysis with 36.1 fb −1 of \( \sqrt{s}=13 \) TeV data collected with the ATLAS experiment, ATL-PHYS-PUB-2017-019 (2017).
  59. [59]
    M. Frigerio, T. Hambye and E. Masso, Sub-GeV dark matter as pseudo-Goldstone from the seesaw scale, Phys. Rev. X 1 (2011) 021026 [arXiv:1107.4564] [INSPIRE].CrossRefGoogle Scholar
  60. [60]
    J.M. Frère, F.S. Ling, L. Lopez-Honorez, E. Nezri, Q. Swillens and G. Vertongen, MeV right-handed neutrinos and dark matter, Phys. Rev. D 75 (2007) 085017 [hep-ph/0610240] [INSPIRE].
  61. [61]
    G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov and B. Zaldivar, MicrOMEGAs5.0: Freeze-in, Comput. Phys. Commun. 231 (2018) 173 [arXiv:1801.03509] [INSPIRE].
  62. [62]
    J.L. Feng, A. Rajaraman and F. Takayama, Superweakly interacting massive particles, Phys. Rev. Lett. 91 (2003) 011302 [hep-ph/0302215] [INSPIRE].
  63. [63]
    J.L. Feng, A. Rajaraman and F. Takayama, SuperWIMP dark matter signals from the early universe, Phys. Rev. D 68 (2003) 063504 [hep-ph/0306024] [INSPIRE].
  64. [64]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  65. [65]
    J. Baur et al., Constraints from Ly-α forests on non-thermal dark matter including resonantly-produced sterile neutrinos, JCAP 12 (2017) 013 [arXiv:1706.03118] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    A. Garzilli, A. Boyarsky and O. Ruchayskiy, Cutoff in the Lyman α forest power spectrum: warm IGM or warm dark matter?, Phys. Lett. B 773 (2017) 258 [arXiv:1510.07006] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    A. Moliné, J.A. Schewtschenko, S. Palomares-Ruiz, C. Boehm and C.M. Baugh, Isotropic extragalactic flux from dark matter annihilations: lessons from interacting dark matter scenarios, JCAP 08 (2016) 069 [arXiv:1602.07282] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    J.A. Schewtschenko, C.M. Baugh, R.J. Wilkinson, C. Boehm, S. Pascoli and T. Sawala, Dark matter-radiation interactions: the structure of Milky Way satellite galaxies, Mon. Not. Roy. Astron. Soc. 461 (2016) 2282 [arXiv:1512.06774] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    J.A. Schewtschenko, R.J. Wilkinson, C.M. Baugh, C. Boehm and S. Pascoli, Dark matter-radiation interactions: the impact on dark matter haloes, Mon. Not. Roy. Astron. Soc. 449 (2015) 3587 [arXiv:1412.4905] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    R.J. Wilkinson, C. Boehm and J. Lesgourgues, Constraining Dark Matter-Neutrino Interactions using the CMB and Large-Scale Structure, JCAP 05 (2014) 011 [arXiv:1401.7597] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    R. Murgia, A. Merle, M. Viel, M. Totzauer and A. Schneider, ”Non-colddark matter at small scales: a general approach, JCAP 11 (2017) 046 [arXiv:1704.07838] [INSPIRE].
  72. [72]
    M.R. Buckley, J. Zavala, F.-Y. Cyr-Racine, K. Sigurdson and M. Vogelsberger, Scattering, Damping and Acoustic Oscillations: Simulating the Structure of Dark Matter Halos with Relativistic Force Carriers, Phys. Rev. D 90 (2014) 043524 [arXiv:1405.2075] [INSPIRE].ADSGoogle Scholar
  73. [73]
    M. Vogelsberger, J. Zavala, F.-Y. Cyr-Racine, C. Pfrommer, T. Bringmann and K. Sigurdson, ETHOSan effective theory of structure formation: dark matter physics as a possible explanation of the small-scale CDM problems, Mon. Not. Roy. Astron. Soc. 460 (2016) 1399 [arXiv:1512.05349] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    F.-Y. Cyr-Racine, K. Sigurdson, J. Zavala, T. Bringmann, M. Vogelsberger and C. Pfrommer, ETHOSan effective theory of structure formation: From dark particle physics to the matter distribution of the Universe, Phys. Rev. D 93 (2016) 123527 [arXiv:1512.05344] [INSPIRE].ADSMathSciNetGoogle Scholar
  75. [75]
    F.-Y. Cyr-Racine, R. de Putter, A. Raccanelli and K. Sigurdson, Constraints on Large-Scale Dark Acoustic Oscillations from Cosmology, Phys. Rev. D 89 (2014) 063517 [arXiv:1310.3278] [INSPIRE].ADSGoogle Scholar
  76. [76]
    M.R. Lovell et al., ETHOSan effective theory of structure formation: Predictions for the high-redshift Universeabundance of galaxies and reionization, arXiv:1711.10497 [INSPIRE].
  77. [77]
    M. Escudero, L. Lopez-Honorez, O. Mena, S. Palomares-Ruiz and P. Villanueva-Domingo, A fresh look into the interacting dark matter scenario, JCAP 06 (2018) 007 [arXiv:1803.08427] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [INSPIRE].
  79. [79]
    X.-D. Shi and G.M. Fuller, A New dark matter candidate: Nonthermal sterile neutrinos, Phys. Rev. Lett. 82 (1999) 2832 [astro-ph/9810076] [INSPIRE].
  80. [80]
    A.D. Dolgov and S.H. Hansen, Massive sterile neutrinos as warm dark matter, Astropart. Phys. 16 (2002) 339 [hep-ph/0009083] [INSPIRE].
  81. [81]
    K. Abazajian, G.M. Fuller and M. Patel, Sterile neutrino hot, warm and cold dark matter, Phys. Rev. D 64 (2001) 023501 [astro-ph/0101524] [INSPIRE].
  82. [82]
    T. Asaka, M. Shaposhnikov and M. Laine, Lightest sterile neutrino abundance within the nuMSM, JHEP 01 (2007) 091 [hep-ph/0612182]
  83. [83]
    A. Merle, V. Niro and D. Schmidt, New Production Mechanism for keV Sterile Neutrino Dark Matter by Decays of Frozen-In Scalars, JCAP 03 (2014) 028 [arXiv:1306.3996] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  84. [84]
    Z. Kang, Upgrading sterile neutrino dark matter to FImP using scale invariance, Eur. Phys. J. C 75 (2015) 471 [arXiv:1411.2773] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    A. Boyarsky, J. Lesgourgues, O. Ruchayskiy and M. Viel, Lyman-α constraints on warm and on warm-plus-cold dark matter models, JCAP 05 (2009) 012 [arXiv:0812.0010] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    J. Heeck and D. Teresi, Cold keV dark matter from decays and scatterings, Phys. Rev. D 96 (2017) 035018 [arXiv:1706.09909] [INSPIRE].ADSGoogle Scholar
  87. [87]
    K.J. Bae, A. Kamada, S.P. Liew and K. Yanagi, Light axinos from freeze-in: production processes, phase space distributions and Ly-α forest constraints, JCAP 01 (2018) 054 [arXiv:1707.06418] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    S. Boulebnane, J. Heeck, A. Nguyen and D. Teresi, Cold light dark matter in extended seesaw models, JCAP 04 (2018) 006 [arXiv:1709.07283] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    V. Brdar, J. Kopp, J. Liu and X.-P. Wang, X-Ray Lines from Dark Matter Annihilation at the keV Scale, Phys. Rev. Lett. 120 (2018) 061301 [arXiv:1710.02146] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    A. Merle, A. Schneider and M. Totzauer, Dodelson-Widrow Production of Sterile Neutrino Dark Matter with Non-Trivial Initial Abundance, JCAP 04 (2016) 003 [arXiv:1512.05369] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    A. Merle and M. Totzauer, keV Sterile Neutrino Dark Matter from Singlet Scalar Decays: Basic Concepts and Subtle Features, JCAP 06 (2015) 011 [arXiv:1502.01011] [INSPIRE].
  92. [92]
    J. König, A. Merle and M. Totzauer, keV Sterile Neutrino Dark Matter from Singlet Scalar Decays: The Most General Case, JCAP 11 (2016) 038 [arXiv:1609.01289] [INSPIRE].
  93. [93]
    M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese and A. Riotto, Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest, Phys. Rev. D 71 (2005) 063534 [astro-ph/0501562] [INSPIRE].
  94. [94]
    U. Seljak, A. Makarov, P. McDonald and H. Trac, Can sterile neutrinos be the dark matter?, Phys. Rev. Lett. 97 (2006) 191303 [astro-ph/0602430] [INSPIRE].
  95. [95]
    M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese and A. Riotto, Can sterile neutrinos be ruled out as warm dark matter candidates?, Phys. Rev. Lett. 97 (2006) 071301 [astro-ph/0605706] [INSPIRE].
  96. [96]
    P. Jethwa, D. Erkal and V. Belokurov, The upper bound on the lowest mass halo, Mon. Not. Roy. Astron. Soc. 473 (2018) 2060 [arXiv:1612.07834] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    P. Villanueva-Domingo, N.Y. Gnedin and O. Mena, Warm Dark Matter and Cosmic Reionization, Astrophys. J. 852 (2018) 139 [arXiv:1708.08277] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    M. Sitwell, A. Mesinger, Y.-Z. Ma and K. Sigurdson, The Imprint of Warm Dark Matter on the Cosmological 21-cm Signal, Mon. Not. Roy. Astron. Soc. 438 (2014) 2664 [arXiv:1310.0029] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    I.P. Carucci, F. Villaescusa-Navarro, M. Viel and A. Lapi, Warm dark matter signatures on the 21cm power spectrum: Intensity mapping forecasts for SKA, JCAP 07 (2015) 047 [arXiv:1502.06961] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    I.P. Carucci, F. Villaescusa-Navarro and M. Viel, The cross-correlation between 21 cm intensity mapping maps and the Lyα forest in the post-reionization era, JCAP 04 (2017) 001 [arXiv:1611.07527] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    W. Beenakker, M. Klasen, M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, The Production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett. 83 (1999) 3780 [Erratum ibid. 100 (2008) 029901] [hep-ph/9906298] [INSPIRE].
  102. [102]
    CMS collaboration, Search for disappearing tracks as a signature of new long-lived particles in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 08 (2018) 016 [arXiv:1804.07321] [INSPIRE].
  103. [103]
    R. Mahbubani, P. Schwaller and J. Zurita, Closing the window for compressed Dark Sectors with disappearing charged tracks, JHEP 06 (2017) 119 [Erratum ibid. 1710 (2017) 061] [arXiv:1703.05327] [INSPIRE].
  104. [104]
    H. Fukuda, N. Nagata, H. Otono and S. Shirai, Higgsino Dark Matter or Not: Role of Disappearing Track Searches at the LHC and Future Colliders, Phys. Lett. B 781 (2018) 306 [arXiv:1703.09675] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    Z. Liu and B. Tweedie, The Fate of Long-Lived Superparticles with Hadronic Decays after LHC Run 1, JHEP 06 (2015) 042 [arXiv:1503.05923] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    CMS collaboration, Search for long-lived particles that decay into final states containing two electrons or two muons in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 052012 [arXiv:1411.6977] [INSPIRE].
  107. [107]
    CMS collaboration, Search for long-lived neutral particles decaying to dijets, CMS-PAS-EXO-12-038 (2013).
  108. [108]
    CMS collaboration, Search for Long-Lived Neutral Particles Decaying to Quark-Antiquark Pairs in Proton-Proton Collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 012007 [arXiv:1411.6530] [INSPIRE].
  109. [109]
    CMS collaboration, Combined search for electroweak production of charginos and neutralinos in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 03 (2018) 160 [arXiv:1801.03957] [INSPIRE].
  110. [110]
    K.T. Matchev and S.D. Thomas, Higgs and Z boson signatures of supersymmetry, Phys. Rev. D 62 (2000) 077702 [hep-ph/9908482] [INSPIRE].
  111. [111]
    L. Calibbi, J.M. Lindert, T. Ota and Y. Takanishi, LHC Tests of Light Neutralino Dark Matter without Light Sfermions, JHEP 11 (2014) 106 [arXiv:1410.5730] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    P. Schwaller and J. Zurita, Compressed electroweakino spectra at the LHC, JHEP 03 (2014) 060 [arXiv:1312.7350] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    H. Baer, A. Mustafayev and X. Tata, Monojets and mono-photons from light higgsino pair production at LHC14, Phys. Rev. D 89 (2014) 055007 [arXiv:1401.1162] [INSPIRE].ADSGoogle Scholar
  114. [114]
    Z. Han, G.D. Kribs, A. Martin and A. Menon, Hunting quasidegenerate Higgsinos, Phys. Rev. D 89 (2014) 075007 [arXiv:1401.1235] [INSPIRE].ADSGoogle Scholar
  115. [115]
    M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161 [arXiv:1404.0682] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    A. Arbey, M. Battaglia and F. Mahmoudi, Monojet Searches for MSSM Simplified Models, Phys. Rev. D 94 (2016) 055015 [arXiv:1506.02148] [INSPIRE].ADSGoogle Scholar
  117. [117]
    A. Nelson, P. Tanedo and D. Whiteson, Limiting SUSY compressed spectra scenarios, Phys. Rev. D 93 (2016) 115029 [arXiv:1509.08485] [INSPIRE].ADSGoogle Scholar
  118. [118]
    ATLAS collaboration, Search for long-lived neutral particles decaying into displaced lepton jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-042 (2016).
  119. [119]
    ATLAS collaboration, Search for long-lived neutral particles decaying in the hadronic calorimeter of ATLAS at \( \sqrt{s}=13 \) TeV in 3.2 fb−1 of data, ATLAS-CONF-2016-103 (2016).
  120. [120]
    CMS collaboration, Search for new long-lived particles at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 780 (2018) 432 [arXiv:1711.09120] [INSPIRE].
  121. [121]
    CMS collaboration, Search for displaced leptons in the e-mu channel, CMS-PAS-EXO-16-022 (2016).
  122. [122]
  123. [123]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  125. [125]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  126. [126]
    D. Curtin and M.E. Peskin, Analysis of Long Lived Particle Decays with the MATHUSLA Detector, Phys. Rev. D 97 (2018) 015006 [arXiv:1705.06327] [INSPIRE].ADSGoogle Scholar
  127. [127]
    F. Elahi, C. Kolda and J. Unwin, UltraViolet Freeze-in, JHEP 03 (2015) 048 [arXiv:1410.6157] [INSPIRE].ADSCrossRefGoogle Scholar
  128. [128]
    B.C. Allanach, M. Badziak, G. Cottin, N. Desai, C. Hugonie and R. Ziegler, Prompt Signals and Displaced Vertices in Sparticle Searches for Next-to-Minimal Gauge Mediated Supersymmetric Models, Eur. Phys. J. C 76 (2016) 482 [arXiv:1606.03099] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Lorenzo Calibbi
    • 1
    Email author
  • Laura Lopez-Honorez
    • 2
    • 3
  • Steven Lowette
    • 4
  • Alberto Mariotti
    • 3
    • 4
  1. 1.CAS Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingP.R. China
  2. 2.Service de Physique ThéoriqueUniversité Libre de BruxellesBrusselsBelgium
  3. 3.Theoretische NatuurkundeVrije Universiteit BrusselBrusselsBelgium
  4. 4.Inter-University Institute for High EnergiesVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations